期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
基于Dirichlet过程的无线视频码率变化识别算法 被引量:3
1
作者 李松 谢新新 +3 位作者 刘东林 孙彦景 李梅香 代妮娜 《高技术通讯》 CAS CSCD 北大核心 2016年第10期833-840,共8页
研究了通过对终端视频帧质量的聚类分析来识别无线视频传输中码率变化的方法,以便为无线视频传输过程中视频码率自适应调整提供参考依据。针对经典模糊C均值(FCM)算法和K均值(K-means)算法需要设定聚类数目的问题,提出一种基于荻利克雷... 研究了通过对终端视频帧质量的聚类分析来识别无线视频传输中码率变化的方法,以便为无线视频传输过程中视频码率自适应调整提供参考依据。针对经典模糊C均值(FCM)算法和K均值(K-means)算法需要设定聚类数目的问题,提出一种基于荻利克雷过程(DP)的FCM算法——DP-FCM算法。该算法将Dirichlet过程和FCM算法相结合,由视频帧信息权重峰值信噪比(IWPSNR)值使用DP过程混合模型模拟估计出聚类数目,然后进行FCM模糊聚类,通过设定合理的阈值,合并聚类结果相似项,完成视频帧的聚类,从而实现视频传输码率变化的识别。以LIVE视频库为试验数据源,对该算法进行了性能测试。试验结果表明,DP-FCM算法能够在无需设定聚类数目的前提下实现视频传输码率变化的分类识别。 展开更多
关键词 视频码率变化 dirichlet过程(DP) FCM聚类算法 视频帧质量
在线阅读 下载PDF
Dirichlet过程混合模型在非线性过程监控中的应用 被引量:2
2
作者 罗林 苏宏业 班岚 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第11期2230-2236,共7页
针对高斯混合模型在模型选择阶段易产生有噪声或过拟合的模型估计问题,提出基于Dirichlet过程混合模型的非参数贝叶斯故障诊断方法.通过重新定义高斯混合模型中的混合权重,利用stick-breaking法建立Dirichlet过程混合模型.通过具有截断... 针对高斯混合模型在模型选择阶段易产生有噪声或过拟合的模型估计问题,提出基于Dirichlet过程混合模型的非参数贝叶斯故障诊断方法.通过重新定义高斯混合模型中的混合权重,利用stick-breaking法建立Dirichlet过程混合模型.通过具有截断作用的变分法近似推理出模型参数以及隐含变量,利用所得后验对故障模型进行估计,并提出基于后验概率的监测统计量以度量出故障状态在后验中的波动.在连续搅拌釜式反应器和Tennessee Eastman化工过程上的实验结果表明,该方法在故障检测方面优于传统的核主元分析法,并且具有较高的故障诊断率. 展开更多
关键词 dirichlet过程混合模型 变分Bayesian推理 故障诊断
在线阅读 下载PDF
基于Dirichlet过程混合的高斯过程模型混合采样推理
3
作者 雷菊阳 黄克 +1 位作者 许海翔 史习智 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第2期271-275,共5页
提出了基于Dirichlet过程混合的高斯过程模型揭示复杂动态系统结构数据的多态性的内在机制.针对均值结构与协方差结构稀疏性的差异性,设计了参数先验与非参数先验来构建基于Polya urn与过松弛层采样的混合采样框架体系.该混合采样方案... 提出了基于Dirichlet过程混合的高斯过程模型揭示复杂动态系统结构数据的多态性的内在机制.针对均值结构与协方差结构稀疏性的差异性,设计了参数先验与非参数先验来构建基于Polya urn与过松弛层采样的混合采样框架体系.该混合采样方案不但能够在统一的Metropolis-Hasting(M-H)概率评价准则下实现,而且能够最大限度地克服高斯随机走步的缺陷,方便、快速地获得马尔科夫样本链的展开.仿真结果表明,混合采样算法比高斯过程回归模型及高斯过程函数回归混合模型具有更广泛的适应性及更好的预测效果. 展开更多
关键词 混合采样 非参数贝叶斯推理 dirichlet过程混合 高斯过程
在线阅读 下载PDF
S-调和函数与超过程的Dirichlet问题(英文)
4
作者 杨春鹏 《应用数学》 CSCD 1997年第1期101-105,共5页
本文定义了超Hunt过程的S-调和函数与Dirichlet问题.定义在Dc上的有界函数f可以扩张到Rd上的函数h使得F(P)=exp<-h。
关键词 超Hunt过程 S-调和函数 dirichlet问题 超过程
在线阅读 下载PDF
基于分层Dirichlet过程的频谱利用聚类和预测
5
作者 刘阳阳 戴明威 黄晓霞 《集成技术》 2015年第2期66-74,共9页
认知无线电网络通过动态频谱接入技术,利用授权频段的空闲时段实现频谱共享。对频谱利用特征的描述和未来利用率的预测有利于实现高效频谱感知算法,进而优化频谱接入策略。通过对标准的分层Dirichlet过程进行扩展,提出了一种跨信道的非... 认知无线电网络通过动态频谱接入技术,利用授权频段的空闲时段实现频谱共享。对频谱利用特征的描述和未来利用率的预测有利于实现高效频谱感知算法,进而优化频谱接入策略。通过对标准的分层Dirichlet过程进行扩展,提出了一种跨信道的非参数贝叶斯模型UTD-HDP(UTD扩展的分层Dirichlet过程),用于无线频谱利用率数据的聚类分析和分布参数估计。利用该模型,可以自适应地描述无线频谱利用率的特征,实现了对未来时间频谱利用率的高精度预测。 展开更多
关键词 频谱利用特征提取 频谱利用预测 分层dirichlet过程 GIBBS采样
在线阅读 下载PDF
一种基于多极化散射机理的极化SAR图像舰船目标检测方法 被引量:8
6
作者 文伟 曹雪菲 +3 位作者 张学峰 陈渤 王英华 刘宏伟 《电子与信息学报》 EI CSCD 北大核心 2017年第1期103-109,共7页
针对基于单一极化特性增强的极化SAR图像目标检测方法的缺陷,该文将DP(Dirichlet Process)混合隐变量SVM模型(DPLVSVM)应用于极化SAR图像舰船目标检测,提出一种基于多极化散射机理的检测方法。该方法通过联合Dirichlet过程混合与Bayes ... 针对基于单一极化特性增强的极化SAR图像目标检测方法的缺陷,该文将DP(Dirichlet Process)混合隐变量SVM模型(DPLVSVM)应用于极化SAR图像舰船目标检测,提出一种基于多极化散射机理的检测方法。该方法通过联合Dirichlet过程混合与Bayes SVM模型,将信号空间划分成若干局部区域,然后在每一局部区域学习一个独立的极化检测器,并将各局部检测器进行组合实现全局多极化散射机理的目标检测。模型采用非参数化Bayes方法自动确定局部区域数量,在完全Bayes框架下,将局部区域划分及检测器学习进行联合优化,保证了各局部区域样本的可分性。另外,为了降低极化特征冗余,该文进一步提出带特征选择功能的稀疏提升DP混合隐变量SVM模型(SPDPLVSVM),提高模型的推广能力。该模型由于采用共轭先验分布,因而可以利用Gibbs采样方法进行高效求解。在RADARSAT-2数据上进行的实验验证了所提方法的有效性。 展开更多
关键词 极化SAR 目标检测 dirichlet过程混合模型 BAYES SVM 特征选择
在线阅读 下载PDF
视频监控中可变人体行为的识别 被引量:13
7
作者 满君丰 李倩倩 温向兵 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期492-497,共6页
为有效识别视频监控中的人体行为,提出了新的人体行为识别模型和前景提取方法.对前景提取,采用背景边缘模型与背景模型相结合的前景检测方法,有效避免了光照、阴影等外部因素的影响.为了快速发现人体运动过程中产生的新行为,采用分层Dir... 为有效识别视频监控中的人体行为,提出了新的人体行为识别模型和前景提取方法.对前景提取,采用背景边缘模型与背景模型相结合的前景检测方法,有效避免了光照、阴影等外部因素的影响.为了快速发现人体运动过程中产生的新行为,采用分层Dirichlet过程聚类人体特征数据来判断是否有未知人体行为产生,用无限HMM对含有未知行为模式的特征向量进行有监督学习,由管理者将其添加到知识库中.当知识库的行为模式达到一定规模时,系统可以无监督地对人体行为进行分析.通过仿真实验证实了提出的方法在人体行为识别方面较其他方法具有独特的优势. 展开更多
关键词 视频监控 行为模式 行为识别 前景提取 多层dirichlet过程
在线阅读 下载PDF
基于DPMM-CHMM的机械设备性能退化评估研究 被引量:8
8
作者 季云 王恒 +1 位作者 朱龙彪 刘肖 《振动与冲击》 EI CSCD 北大核心 2017年第23期170-174,共5页
针对传统的HMM模型状态数必须预先设定的不足,提出了一种基于DPMM-CHMM的机械设备性能退化评估方法。该方法利用DPMM模型的自动聚类功能,实现了模型结构根据观测数据的自适应变化和动态调整,获得设备运行过程中的最优退化状态数,并结合C... 针对传统的HMM模型状态数必须预先设定的不足,提出了一种基于DPMM-CHMM的机械设备性能退化评估方法。该方法利用DPMM模型的自动聚类功能,实现了模型结构根据观测数据的自适应变化和动态调整,获得设备运行过程中的最优退化状态数,并结合CHMM良好的分析和建模能力,得到设备退化状态转移路径,实现机械设备运行过程中的退化状态识别和性能评估,并利用滚动轴承全寿命数据进行了应用研究。结果表明,该方法可以有效地识别轴承运行中的不同退化状态,为基于状态的设备维修提供了理论指导。 展开更多
关键词 狄利克雷混合模型 连续隐马尔可夫模型 性能退化评估 滚动轴承
在线阅读 下载PDF
基于社区时空主题模型的微博社区发现方法 被引量:10
9
作者 段炼 朱欣焰 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第3期464-469,共6页
提出了一种基于主题模型的微博社区发现方法。该方法采用狄利克雷过程(Dirichlet process)自适应生成多个潜在地理区域;利用多项式分布描述主题在连续时间中的强度;将用户对潜在地理区域和社区的选择偏好引入主题模型;最后通过EM方法和G... 提出了一种基于主题模型的微博社区发现方法。该方法采用狄利克雷过程(Dirichlet process)自适应生成多个潜在地理区域;利用多项式分布描述主题在连续时间中的强度;将用户对潜在地理区域和社区的选择偏好引入主题模型;最后通过EM方法和Gibbs采样,实现时空主题模型参数估算,以基于主题相似性进行社区发现。实验表明,该方法能更加准确地识别微博社区。 展开更多
关键词 狄利克雷过程 地理标识微博 微博社区发现 微博主题挖掘 时空主题模型
在线阅读 下载PDF
一种基于Dirichelt过程隐变量支撑向量机模型的目标识别方法 被引量:4
10
作者 张学峰 陈渤 +1 位作者 王鹏辉 刘宏伟 《电子与信息学报》 EI CSCD 北大核心 2015年第1期29-36,共8页
在目标识别中,对于样本数较多且分布复杂的数据,若将所有训练样本用来训练一个单一的分类器,会增加分类器的训练复杂度,且容易忽视样本的内在结构,不利于分类。因此人们提出了混合专家系统(ME),即将训练样本集划分为多个训练样本子集,... 在目标识别中,对于样本数较多且分布复杂的数据,若将所有训练样本用来训练一个单一的分类器,会增加分类器的训练复杂度,且容易忽视样本的内在结构,不利于分类。因此人们提出了混合专家系统(ME),即将训练样本集划分为多个训练样本子集,并在每个子集上单独训练分类器。但是传统ME系统需要人为确定专家个数,并且每个子集的学习独立于后端的任务,如分类。该文提出一种基于Dirichlet过程(DP)混合隐变量(LV)支持向量机(SVM)模型(DPLVSVM)的目标识别算法,采用DP混合模型自动确定样本聚类个数,同时每个聚类中使用线性隐变量SVM(LVSVM)进行分类。不同于以往算法,DPLVSVM将聚类过程和分类器的训练过程联合优化,保证了各个子集中样本的分布上的一致性和可分性,而且可以利用Gibbs采样技术对模型参数进行简便有效的估计。基于人工数据集、公共数据集以及雷达实测数据的实验验证了该文方法的有效性。 展开更多
关键词 目标识别 混合专家系统 dirichlet过程混合模型 隐变量支持向量机分类器
在线阅读 下载PDF
基于隐聚类和狄利特雷过程的大规模MIMO-OFDM接收机设计 被引量:2
11
作者 崔建华 袁正道 +2 位作者 王忠勇 路新华 薛琦 《电子学报》 EI CAS CSCD 北大核心 2019年第12期2515-2523,共9页
本文首先讨论了大规模MIMO-OFDM(Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing)系统信道的空间相关性,提出了一种基于隐聚类假设的信道建模方法,利用概率参数模拟不同的传播环境.然后,将机器学习领域的... 本文首先讨论了大规模MIMO-OFDM(Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing)系统信道的空间相关性,提出了一种基于隐聚类假设的信道建模方法,利用概率参数模拟不同的传播环境.然后,将机器学习领域的狄利特雷过程(Dirichlet Process,DP)引入到稀疏贝叶斯学习(Sparse Bayesian Learning,SBL)模型中,建立了DP-SBL结构,在信道估计的同时挖掘并利用大规模MIMO系统所特有的隐聚类特征.接着,将DP-SBL结构应用于大规模MIMO-OFDM系统中,在因子图上利用消息传递算法推导了一种基于隐聚类和狄利特雷过程的接收机算法.最后,将本文提出的接收机算法和现有算法进行对比分析.结果表明,本文提出的接收机算法充分利用了大规模MIMO-OFDM系统特有的空间相关性,能够以较低的计算复杂度获得较强的鲁棒性和显著的性能增益. 展开更多
关键词 大规模MIMO 迭代接收机设计 隐聚类假设 狄利特雷过程 消息传递算法
在线阅读 下载PDF
基于HDP-HMM的机械设备故障预测方法研究 被引量:6
12
作者 王恒 周易文 +1 位作者 瞿家明 季云 《振动与冲击》 EI CSCD 北大核心 2019年第8期173-179,共7页
针对隐马尔科夫模型状态数必须预先设定的不足,提出了一种基于分层狄利克雷过程-隐马尔科夫模型(HDP-HMM)的机械设备故障预测方法。该算法通过构造HDP作为HMM参数的先验分布,利用HDP分层共享和自动聚类的优点,实现了模型结构动态更新,... 针对隐马尔科夫模型状态数必须预先设定的不足,提出了一种基于分层狄利克雷过程-隐马尔科夫模型(HDP-HMM)的机械设备故障预测方法。该算法通过构造HDP作为HMM参数的先验分布,利用HDP分层共享和自动聚类的优点,实现了模型结构动态更新,获得设备运行过程中的隐状态数;基于HDP-HMM所建立的退化状态动态转移关系,确定设备早期故障点和功能故障点,实现设备的健康等级评估和故障预测。利用美国USFI/UCR智能维护系统中心提供的滚动轴承全寿命数据进行了应用研究。结果表明,针对多观测序列,HDP-HMM能有效实现组合聚类,识别结果不依赖于算法初始参数的选择,具有较强的鲁棒性;与基于K-S检验的退化评估算法比较表明,HDP-HMM更能有效描述设备实际退化过程。 展开更多
关键词 分层狄利克雷过程-隐马尔科夫模型(HDP-HMM) 退化状态 故障预测
在线阅读 下载PDF
大规模MIMO系统上行链路时间-空间结构信道估计算法 被引量:7
13
作者 路新华 MANCHÓN Carles Navarro +1 位作者 王忠勇 张传宗 《电子与信息学报》 EI CSCD 北大核心 2020年第2期519-525,共7页
针对大规模多入多出(MIMO)系统上行链路非平稳空间相关信道的估计问题,该文利用信道的时间-空间2维稀疏结构信息,应用狄利克雷过程(DP)和变分贝叶斯推理(VBI),设计了一种低导频开销和计算复杂度的信道估计迭代算法,提高了信道估计精度... 针对大规模多入多出(MIMO)系统上行链路非平稳空间相关信道的估计问题,该文利用信道的时间-空间2维稀疏结构信息,应用狄利克雷过程(DP)和变分贝叶斯推理(VBI),设计了一种低导频开销和计算复杂度的信道估计迭代算法,提高了信道估计精度。由于平稳空间相关信道难以适用于大规模MIMO系统,该文借助于狄利克雷过程构建了非平稳空间相关信道先验模型,可将具有空间关联的多个物理信道映射为具有相同时延结构的概率信道,并应用变分贝叶斯推理设计了低导频开销和计算复杂度的信道估计迭代算法。实验结果验证了所提算法的有效性,且具有对系统关键参数鲁棒性的优点。 展开更多
关键词 大规模MIMO 非平稳信道 时间-空间 狄利克雷过程 变分贝叶斯推理
在线阅读 下载PDF
一种全自动的MSTAR SAR目标图像分割方法 被引量:1
14
作者 徐侃 杨丽春 +1 位作者 刘钢 杨文 《现代雷达》 CSCD 北大核心 2012年第9期59-62,共4页
狄利克雷过程混合模型(Dirichlet Process Mixture,DPM)作为一种非参数概率统计模型,可以有效应用于SAR图像的非监督分类。文中提出一种全自动的MSTAR坦克SAR图像分割方法。该方法首先基于DPM确定出图像中的类别数目,接着使用马尔科夫... 狄利克雷过程混合模型(Dirichlet Process Mixture,DPM)作为一种非参数概率统计模型,可以有效应用于SAR图像的非监督分类。文中提出一种全自动的MSTAR坦克SAR图像分割方法。该方法首先基于DPM确定出图像中的类别数目,接着使用马尔科夫随机场(Markov Random Field,MRF)对所得图像类别概率的空间邻域关系进行描述,然后结合标号代价能量优化算法获取最终的分割结果。该方法在不需要人为指定待分割图像类别个数的同时,能较好地保证分割结果的合理性与连贯性。在MSTAR SAR数据上的实验表明了其有效性。 展开更多
关键词 SAR图像 混合狄利克雷模型 马尔科夫随机场 能量优化
在线阅读 下载PDF
线性动态系统噪声辨识的非参数贝叶斯推理算法研究 被引量:1
15
作者 雷菊阳 许海翔 +1 位作者 黄克 史习智 《噪声与振动控制》 CSCD 北大核心 2008年第6期69-72,共4页
提出一新的非参数贝叶斯推理算法来辨识任意复杂的多模噪声分布,采用无穷维推理技术,能够较为精确地逼近噪声的后验分布。算法主要引入一随机度量分布满足一预设的先验过程——混合Dirichlet过程(Dirichlet Process Mixture,简称DPM),由... 提出一新的非参数贝叶斯推理算法来辨识任意复杂的多模噪声分布,采用无穷维推理技术,能够较为精确地逼近噪声的后验分布。算法主要引入一随机度量分布满足一预设的先验过程——混合Dirichlet过程(Dirichlet Process Mixture,简称DPM),由于DPM具有形似于Polya urn的采样特性,能够很方便地对噪声数据进行聚类,并导出噪声的后验分布。仿真结果显示,噪声数据似然的Metropolis-Hastings(M-H)的采样算法比点估计的系统分析算法精度高。 展开更多
关键词 振动与波 非参数贝叶斯推理 噪声辨识 dirichlet过程混合 吉布斯采样
在线阅读 下载PDF
利用稀疏贝叶斯理论的跳时估计方法 被引量:4
16
作者 张朝柱 王宇 荆福龙 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2019年第3期39-44,共6页
当跳频信号的频率不在预设的频率集中时,为了提高跳时估计的正确率,提出了一种基于稀疏贝叶斯理论的跳时估计方法。该方法首先在信号模型中设置频率偏差参数;其次利用狄利克雷过程以及稀疏贝叶斯理论,设计接收信号模型中各个参数的迭代... 当跳频信号的频率不在预设的频率集中时,为了提高跳时估计的正确率,提出了一种基于稀疏贝叶斯理论的跳时估计方法。该方法首先在信号模型中设置频率偏差参数;其次利用狄利克雷过程以及稀疏贝叶斯理论,设计接收信号模型中各个参数的迭代规则,并在每次迭代中利用频率偏差参数修正频率字典矩阵;最后,算法收敛时可得到用于计算谱图的稀疏矩阵,进而可以得到跳时的估计值。仿真结果表明,该算法估计的跳时正确率高于其他方法,并且计算的谱图的真实性也高于其他方法。 展开更多
关键词 跳频 狄利克雷过程 稀疏贝叶斯理论 稀疏矩阵
在线阅读 下载PDF
扩散过程代数式收敛定性的判别准则 被引量:2
17
作者 王颖喆 《应用数学》 CSCD 北大核心 2004年第1期138-143,共6页
本文定性地讨论非紧空间中可逆扩散过程的代数式收敛的判定 .使用分裂空间的方法 .将全空间分裂成两个部分 :紧的子空间与非紧的余子空间 .在紧子空间中考虑边界反射的Neumann过程 ,它必然是代数式收敛的 .而在非紧子空间中考虑边界吸收... 本文定性地讨论非紧空间中可逆扩散过程的代数式收敛的判定 .使用分裂空间的方法 .将全空间分裂成两个部分 :紧的子空间与非紧的余子空间 .在紧子空间中考虑边界反射的Neumann过程 ,它必然是代数式收敛的 .而在非紧子空间中考虑边界吸收的Dirichlet过程 ,如果这一Dirichlet过程以代数式的速度击中边界 ,那么就有原过程在全空间代数式收敛 ;反之 ,原过程代数式收敛 ,非紧子空间中的Dirichlet过程也是代数式收敛的 .因此过程在紧子空间的任意摄动不会影响在全空间的代数式收敛性 . 展开更多
关键词 非紧空间 代数式收敛定性 dirichlet过程 Neumann过程 可逆扩散过程 判定
在线阅读 下载PDF
居民个体出行行为聚类及出行模式分析——以三亚市为例 被引量:4
18
作者 陈仲 杨克青 《上海城市规划》 2020年第5期30-35,共6页
手机信令数据不仅记录个体出行轨迹,同时也为分析城市居民出行模式提供了基础。通过提出一种基于狄利克雷过程混合模型的聚类方法,以从手机信令提取的出行OD(Origin-Destination)为基础,研究个体出行行为及群体出行模式。与其他聚类方... 手机信令数据不仅记录个体出行轨迹,同时也为分析城市居民出行模式提供了基础。通过提出一种基于狄利克雷过程混合模型的聚类方法,以从手机信令提取的出行OD(Origin-Destination)为基础,研究个体出行行为及群体出行模式。与其他聚类方法相比,该方法最大的优点在于无需事先指定聚类的数量,并且能够基于数据识别出新的聚类。通过将该方法应用到三亚市的居民出行行为研究中,得到15类个体行为聚类。从而进一步结合城市特征,归纳得出5种典型出行模式,较为全面地反映三亚居民活动的实际情况,为制定差异化的交通政策、精细化交通管理提供支撑。 展开更多
关键词 出行行为 模式聚类 手机信令 狄利克雷混合模型
在线阅读 下载PDF
无限隐Markov模型理论及仿真研究 被引量:2
19
作者 李志农 柳宝 《南昌航空大学学报(自然科学版)》 CAS 2016年第2期37-43,共7页
论述了传统隐Markov模型的理论及其存在的不足,并在此基础之上,阐明了无限隐Markov模型的理论及算法。在i HMM中,首先,从Dirichlet过程进行状态间转移概率的计算推导。然后,使用分层Dirichlet过程进行隐状态状态机制和生成机制的推理。... 论述了传统隐Markov模型的理论及其存在的不足,并在此基础之上,阐明了无限隐Markov模型的理论及算法。在i HMM中,首先,从Dirichlet过程进行状态间转移概率的计算推导。然后,使用分层Dirichlet过程进行隐状态状态机制和生成机制的推理。其次,对模型超越参数的推理、优化和似然估计。还通过仿真实例对i HMM推理算法进行了验证,仿真结果表明i HMM具有很好的状态数目发掘能力,能够准确反映状态序列的结构特征。 展开更多
关键词 无限隐markov模型 dirichlet过程 吉布斯采样
在线阅读 下载PDF
基于高斯混合模型的火焰检测算法 被引量:3
20
作者 张怡 《信息技术》 2021年第1期74-79,共6页
火灾作为对社会和环境危害最大的灾难,一直是人们重点防范的对象。但目前现有的火灾预警系统都存在误报率过高的问题。因此,文中提出了一种基于火焰闪烁动力学的火焰检测框架。在该框架中,火焰颜色分布模型采用高斯混合模型。此外,采用... 火灾作为对社会和环境危害最大的灾难,一直是人们重点防范的对象。但目前现有的火灾预警系统都存在误报率过高的问题。因此,文中提出了一种基于火焰闪烁动力学的火焰检测框架。在该框架中,火焰颜色分布模型采用高斯混合模型。此外,采用概率显著性分析方法和一维小波变换提取运动显著性和滤波后的时间序列作为特征,描述火焰的动态特性和闪烁特性。通过实验证明了提出的方法对比现有方法具有较好的精确度,能够获得95%以上的精度,并且具有较低的误报率,满足实际需求。 展开更多
关键词 机器视觉 火焰检测 高斯混合模型 dirichlet过程
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部