期刊文献+
共找到25,463篇文章
< 1 2 250 >
每页显示 20 50 100
Direction-of-arrival estimation for co-located multiple-input multiple-output radar using structural sparsity Bayesian learning 被引量:4
1
作者 文方青 张弓 贲德 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期70-76,共7页
This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the b... This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms. 展开更多
关键词 multiple-input multiple-output radar random arrays direction of arrival estimation sparseBayesian learning
在线阅读 下载PDF
Wideband Direction-of-Arrival Estimation Based on Deep Learning
2
作者 Liya Xu Yi Ma +1 位作者 Jinfeng Zhang Bin Liao 《Journal of Beijing Institute of Technology》 EI CAS 2021年第4期412-424,共13页
The performance of traditional high-resolution direction-of-arrival(DOA)estimation methods is sensitive to the inaccurate knowledge on prior information,including the position of ar-ray elements,array gain and phase,a... The performance of traditional high-resolution direction-of-arrival(DOA)estimation methods is sensitive to the inaccurate knowledge on prior information,including the position of ar-ray elements,array gain and phase,and the mutual coupling between the array elements.Learning-based methods are data-driven and are expected to perform better than their model-based counter-parts,since they are insensitive to the array imperfections.This paper presents a learning-based method for DOA estimation of multiple wideband far-field sources.The processing procedure mainly includes two steps.First,a beamspace preprocessing structure which has the property of fre-quency invariant is applied to the array outputs to perform focusing over a wide bandwidth.In the second step,a hierarchical deep neural network is employed to achieve classification.Different from neural networks which are trained through a huge data set containing different angle combinations,our deep neural network can achieve DOA estimation of multiple sources with a small data set,since the classifiers can be trained in different small subregions.Simulation results demonstrate that the proposed method performs well both in generalization and imperfections adaptation. 展开更多
关键词 direction-of-arrival(DOA)estimation deep-neural network(DNN) WIDEBAND mul-tiple sources array imperfection
在线阅读 下载PDF
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives
3
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation DATA-DRIVEN Machine learning Ensemble learning Ensemble diversity
在线阅读 下载PDF
Device Activity Detection and Channel Estimation Using Score-Based Generative Models in Massive MIMO
4
作者 TANG Chenyue LI Zeshen +1 位作者 CHEN Zihan Howard H.YANG 《ZTE Communications》 2025年第1期53-62,共10页
The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and ... The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices. 展开更多
关键词 activity detection channel estimation inverse problem score-based generative model massive MIMO
在线阅读 下载PDF
Continuum estimation in low-resolution gamma-ray spectra based on deep learning
5
作者 Ri Zhao Li-Ye Liu +5 位作者 Xin Liu Zhao-Xing Liu Run-Cheng Liang Ren-Jing Ling-Hu Jing Zhang Fa-Guo Chen 《Nuclear Science and Techniques》 2025年第2期5-17,共13页
In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated ... In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated spectrum is established,and a convolutional neural network consisting of 51 layers and more than 105 parameters is constructed to directly predict the entire continuum from the extracted global spectrum features.For testing,an in-house NaI-type whole-body counter is used,and 106 training spectrum samples(20%of which are reserved for testing)are generated using Monte Carlo simulations.In addition,the existing fitting,step-type,and peak erosion methods are selected for comparison.The proposed method exhibits excellent performance,as evidenced by its activity error distribution and the smallest mean activity error of 1.5%among the evaluated methods.Additionally,a validation experiment is performed using a whole-body counter to analyze a human physical phantom containing four radionuclides.The largest activity error of the proposed method is−5.1%,which is considerably smaller than those of the comparative methods,confirming the test results.The multiscale feature extraction and nonlinear relation modeling in the proposed method establish a novel approach for accurate and convenient continuum estimation in a low-resolution gamma-ray spectrum.Thus,the proposed method is promising for accurate quantitative radioactivity analysis in practical applications. 展开更多
关键词 Gamma-ray spectrum Continuum estimation Deep learning Convolutional neural network End-to-end prediction
在线阅读 下载PDF
Model-driven full system dynamics estimation of PMSM-driven chain shell magazine 被引量:1
6
作者 Kai Wei Longmiao Chen Quan Zou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期147-156,共10页
Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is pro... Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals. 展开更多
关键词 Chain shell magazine Full system dynamics estimation Disturbance estimation Parameter estimation Adaptive extended state observer
在线阅读 下载PDF
A comparative study of data-driven battery capacity estimation based on partial charging curves 被引量:2
7
作者 Chuanping Lin Jun Xu +5 位作者 Delong Jiang Jiayang Hou Ying Liang Xianggong Zhang Enhu Li Xuesong Mei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期409-420,I0010,共13页
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar... With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves. 展开更多
关键词 Lithium-ion battery Partial charging curves Capacity estimation DATA-DRIVEN Sampling frequency
在线阅读 下载PDF
High-Precision DOA Estimation Method Based on Synthetic Aperture Technique
8
作者 Yongjia Dou Guangcai Sun +1 位作者 Yuqi Wang Mengdao Xing 《Journal of Beijing Institute of Technology》 EI CAS 2024年第2期111-118,共8页
The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to ach... The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to achieve high-precision DOA estimation by utilizing past and present signals.The concept of synthetic aperture is introduced to construct a linear DOA estima-tion model.A DOA fine-tuning method based on the linear model is proposed to eliminate the lin-ear DOA variation,achieving a non-coherent accumulation of DOA estimations.Moreover,the baseband modulation and the phase modulation caused by the range history are compensated to achieve the coherent accumulation of all the DOA estimations.Simulation results show that the proposed method can significantly improve the DOA estimated accuracy at low signal-to-noise ratios(SNR). 展开更多
关键词 synthetic aperture direction-of-arrival(DOA)estimation coherent accumulation
在线阅读 下载PDF
Cascaded ELM-Based Joint Frame Synchronization and Channel Estimation over Rician Fading Channel with Hardware Imperfections 被引量:1
9
作者 Qing Chaojin Rao Chuangui +2 位作者 Yang Na Tang Shuhai Wang Jiafan 《China Communications》 SCIE CSCD 2024年第6期87-102,共16页
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com... Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations. 展开更多
关键词 channel estimation extreme learning machine frame synchronization hardware imperfection nonlinear distortion synchronization metric
在线阅读 下载PDF
High-Precision Doppler Frequency Estimation Based Positioning Using OTFS Modulations by Red and Blue Frequency Shift Discriminator 被引量:1
10
作者 Shaojing Wang Xiaomei Tang +3 位作者 Jing Lei Chunjiang Ma Chao Wen Guangfu Sun 《China Communications》 SCIE CSCD 2024年第2期17-31,共15页
Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Dopple... Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler. 展开更多
关键词 channel estimation communication and navigation integration Orthogonal Time Frequency and Space pseudo-noise sequence red-blue frequency shift discriminator
在线阅读 下载PDF
Enhancing microseismic/acoustic emission source localization accuracy with an outlier-robust kernel density estimation approach 被引量:1
11
作者 Jie Chen Huiqiong Huang +4 位作者 Yichao Rui Yuanyuan Pu Sheng Zhang Zheng Li Wenzhong Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期943-956,共14页
Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust l... Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications. 展开更多
关键词 Microseismic source/acoustic emission(MS/AE) Kernel density estimation(KDE) Damping linear correction Source location Abnormal arrivals
在线阅读 下载PDF
Non-cooperative Space Target Estimation Algorithm Without Prior Information Dependence Based on Temporal Line of Sight Constraint
12
作者 XIAO Hui ZHU Chongrui +3 位作者 LIU Xinqi YU Yifan SHENG Qinghong YANG Rui 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期526-540,共15页
Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a p... Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a parameter estimation model of the boost phase based on trajectory plane parametric cutting.The use of the plane passing through the geo-center and the cutting sequence line of sight(LOS)generates the trajectory-cutting plane.With the coefficient of the trajectory cutting plane directly used as the parameter to be estimated,a motion parameter estimation model in space non-cooperative targets is established,and the Gauss-Newton iteration method is used to solve the flight parameters.The experimental results show that the estimation algorithm proposed in this paper weakly relies on prior information and has higher estimation accuracy,providing a practical new idea and method for the parameter estimation of space non-cooperative targets under single-satellite warning. 展开更多
关键词 motion parameter estimation estimation of impact point infrared early warning boost phase modeling trajectory database construction
在线阅读 下载PDF
Strabismus Detection Based on Uncertainty Estimation and Knowledge Distillation
13
作者 Yibiao Rong Ziyin Yang +1 位作者 Ce Zheng Zhun Fan 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期399-411,共13页
Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detectio... Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detection often fail to estimate prediction certainty precisely.This paper employed a Bayesian deep learning algorithm with knowledge distillation,improving the model's performance and uncertainty estimation ability.Trained on 6807 images from two tertiary hospitals,the model showed significantly higher diagnostic accuracy than traditional deep-learning models.Experimental results revealed that knowledge distillation enhanced the Bayesian model’s performance and uncertainty estimation ability.These findings underscore the combined benefits of using Bayesian deep learning algorithms and knowledge distillation,which improve the reliability and accuracy of strabismus diagnostic predictions. 展开更多
关键词 knowledge distillation strabismus detection uncertainty estimation
在线阅读 下载PDF
Quantum state estimation based on deep learning
14
作者 Haowen Xiao Zhiguang Han 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期187-195,共9页
We used deep learning techniques to construct various models for reconstructing quantum states from a given set of coincidence measurements.Through simulations,we have demonstrated that our approach generates function... We used deep learning techniques to construct various models for reconstructing quantum states from a given set of coincidence measurements.Through simulations,we have demonstrated that our approach generates functionally equivalent reconstructed states for a wide range of pure and mixed input states.Compared with traditional methods,our system offers the advantage of faster speed.Additionally,by training our system with measurement results containing simulated noise sources,the system shows a significant improvement in average fidelity compared with typical reconstruction methods.We also found that constraining the variational manifold to physical states,i.e.,positive semi-definite density matrices,greatly enhances the quality of the reconstructed states in the presence of experimental imperfections and noise.Finally,we validated the correctness and superiority of our model by using data generated on IBM Quantum Platform,a real quantum computer. 展开更多
关键词 deep learning quantum state estimation IBM quantum processor
在线阅读 下载PDF
Parameter estimation in n-dimensional massless scalar field
15
作者 杨颖 荆继良 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期231-237,共7页
Quantum Fisher information(QFI)associated with local metrology has been used to parameter estimation in open quantum systems.In this work,we calculated the QFI for a moving Unruh-DeWitt detector coupled with massless ... Quantum Fisher information(QFI)associated with local metrology has been used to parameter estimation in open quantum systems.In this work,we calculated the QFI for a moving Unruh-DeWitt detector coupled with massless scalar fields in n-dimensional spacetime,and analyzed the behavior of QFI with various parameters,such as the dimension of spacetime,evolution time,and Unruh temperature.We discovered that the QFI of state parameter decreases monotonically from 1 to 0 over time.Additionally,we noted that the QFI for small evolution times is several orders of magnitude higher than the QFI for long evolution times.We also found that the value of QFI decreases at first and then stabilizes as the Unruh temperature increases.It was observed that the QFI depends on initial state parameterθ,and Fθis the maximum forθ=0 orθ=π,Fφis the maximum forθ=π/2.We also obtain that the maximum value of QFI for state parameters varies for different spacetime dimensions with the same evolution time. 展开更多
关键词 quantum Fisher information parameter estimation open quantum systems
在线阅读 下载PDF
Battery pack capacity estimation for electric vehicles based on enhanced machine learning and field data
16
作者 Qingguang Qi Wenxue Liu +3 位作者 Zhongwei Deng Jinwen Li Ziyou Song Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期605-618,共14页
Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using... Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using laboratory datasets,most of them are applied to battery cells and lack satisfactory fidelity when extended to real-world electric vehicle(EV)battery packs.The challenges intensify for large-sized EV battery packs,where unpredictable operating profiles and low-quality data acquisition hinder precise capacity estimation.To fill the gap,this study introduces a novel data-driven battery pack capacity estimation method grounded in field data.The proposed approach begins by determining labeled capacity through an innovative combination of the inverse ampere-hour integral,open circuit voltage-based,and resistance-based correction methods.Then,multiple health features are extracted from incremental capacity curves,voltage curves,equivalent circuit model parameters,and operating temperature to thoroughly characterize battery aging behavior.A feature selection procedure is performed to determine the optimal feature set based on the Pearson correlation coefficient.Moreover,a convolutional neural network and bidirectional gated recurrent unit,enhanced by an attention mechanism,are employed to estimate the battery pack capacity in real-world EV applications.Finally,the proposed method is validated with a field dataset from two EVs,covering approximately 35,000 kilometers.The results demonstrate that the proposed method exhibits better estimation performance with an error of less than 1.1%compared to existing methods.This work shows great potential for accurate large-sized EV battery pack capacity estimation based on field data,which provides significant insights into reliable labeled capacity calculation,effective features extraction,and machine learning-enabled health diagnosis. 展开更多
关键词 Electricvehicle Lithium-ion battery pack Capacity estimation Machine learning Field data
在线阅读 下载PDF
MDTCNet:Multi-Task Classifications Network and TCNN for Direction of Arrival Estimation
17
作者 Yu Jiarun Wang Yafeng 《China Communications》 SCIE CSCD 2024年第10期148-166,共19页
The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number i... The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number in millimeter wave system,the multi-task deep residual shrinkage network(MTDRSN) and transfer learning-based convolutional neural network(TCNN), namely MDTCNet, are proposed. The sampling covariance matrix based on the received signal is used as the input to the proposed network. A DRSN-based multi-task classifications model is first introduced to estimate signal sources number and multipath number simultaneously. Then, the DoAs with multi-signal and multipath are estimated by the regression model. The proposed CNN is applied for DoAs estimation with the predicted number of signal sources and paths. Furthermore, the modelbased transfer learning is also introduced into the regression model. The TCNN inherits the partial network parameters of the already formed optimization model obtained by the CNN. A series of experimental results show that the MDTCNet-based DoAs estimation method can accurately predict the signal sources number and multipath number under a range of signal-to-noise ratios. Remarkably, the proposed method achieves the lower root mean square error compared with some existing deep learning-based and traditional methods. 展开更多
关键词 DoA estimation MDTCNet millimeter wave system multi-task classifications model regression model
在线阅读 下载PDF
Nonlinear robust adaptive control for bidirectional stabilization system of all-electric tank with unknown actuator backlash compensation and disturbance estimation
18
作者 Shusen Yuan Wenxiang Deng +1 位作者 Jianyong Yao Guolai Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期144-158,共15页
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin... Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach. 展开更多
关键词 Bidirectional stabilization system Robust control Adaptive control Backlash inverse Disturbance estimation
在线阅读 下载PDF
Parameter Interval Estimation for Yule-Simon Distribution
19
作者 DENG Wenli WANG Liming WANG Jinglong 《应用概率统计》 CSCD 北大核心 2024年第6期1000-1015,共16页
Yule-Simon distribution has a wide range of practical applications, such as in networkscience, biology and humanities. A lot of work focuses on the study of how well the empirical datafits Yule-Simon distribution or h... Yule-Simon distribution has a wide range of practical applications, such as in networkscience, biology and humanities. A lot of work focuses on the study of how well the empirical datafits Yule-Simon distribution or how to estimate the parameter. There are still some open problems,such as the error analysis of parameter estimation, the theoretical proof of the convergence of theiterative algorithm for maximum likelihood estimation of parameters. The Yule-Simon distributionis a heavy-tailed distribution and the parameter is usually less than 2, so the variance does notexist. This makes it difficult to give an interval estimation of the parameter. Using the compressiontransformation, this paper proposes a method of interval estimation based on the centrallimit theorem. This method can be applied to many heavy-tailed distributions. The other twoasymptotic confidence intervals of the parameter are obtained based on the maximum likelihoodand the mode method. These estimation methods are compared in simulations and applications toempirical data. 展开更多
关键词 Yule-Simon distribution maximum likelihood estimation confidence interval compression transformation
在线阅读 下载PDF
Nonparametric Estimation of the Trend Function for Stochastic Processes Driven by Fractional Brownian Motion of the Second Kind
20
作者 WANG Yihan ZHANG Xuekang 《应用数学》 北大核心 2024年第4期885-892,共8页
The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of co... The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of convergence,and the asymptotic normality of the kernel-type estimator are discussed.Besides,we prove that the rate of convergence of the kernel-type estimator depends on the smoothness of the trend of the nonperturbed system. 展开更多
关键词 Nonparametric estimation Fractional Brownian motion Uniform consistency Asymptotic normality
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部