期刊文献+
共找到154篇文章
< 1 2 8 >
每页显示 20 50 100
Discovering causal models for structural,construction and defense-related engineering phenomena
1
作者 M.Z.Naser 《Defence Technology(防务技术)》 2025年第1期60-79,共20页
Causality,the science of cause and effect,has made it possible to create a new family of models.Such models are often referred to as causal models.Unlike those of mathematical,numerical,empirical,or machine learning(M... Causality,the science of cause and effect,has made it possible to create a new family of models.Such models are often referred to as causal models.Unlike those of mathematical,numerical,empirical,or machine learning(ML)nature,causal models hope to tie the cause(s)to the effect(s)pertaining to a phenomenon(i.e.,data generating process)through causal principles.This paper presents one of the first works at creating causal models in the area of structural and construction engineering.To this end,this paper starts with a brief review of the principles of causality and then adopts four causal discovery algorithms,namely,PC(Peter-Clark),FCI(fast causal inference),GES(greedy equivalence search),and GRa SP(greedy relaxation of the sparsest permutation),have been used to examine four phenomena,including predicting the load-bearing capacity of axially loaded members,fire resistance of structural members,shear strength of beams,and resistance of walls against impulsive(blast)loading.Findings from this study reveal the possibility and merit of discovering complete and partial causal models.Finally,this study also proposes two simple metrics that can help assess the performance of causal discovery algorithms. 展开更多
关键词 CAUSALITY Causal discovery directed acyclic graphs machine learning Metrics
在线阅读 下载PDF
Detection and recognition of LPI radar signals using visibility graphs 被引量:3
2
作者 WAN Tao JIANG Kaili +2 位作者 LIAO Jingyi TANG Yanli TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1186-1192,共7页
The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the l... The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the low probability of intercept(LPI)radar.This paper explores the usefulness of such an algorithm in the scenario of LPI radar signal detection and recognition based on visibility graphs(VG).More network and feature information can be extracted in the VG two-dimensional space,this algorithm can solve the problem of signal recognition using the autocorrelation function.Wavelet denoising processing is introduced into the signal to be tested,and the denoised signal is converted to the VG domain.Then,the signal detection is performed by using the constant false alarm of the VG average degree.Next,weight the converted graph.Finally,perform feature extraction on the weighted image,and use the feature to complete the recognition.It is testified that the proposed algorithm offers significant improvements,such as robustness to noise,and the detection and recognition accuracy,over the recent researches. 展开更多
关键词 DETECTION RECOGNITION visibility graph(VG) support vector machine(SVM) k-nearest neighbor(KNN)
在线阅读 下载PDF
Automatic radar antenna scan type recognition based on limited penetrable visibility graph 被引量:2
3
作者 LIU Songtao LEI Zhenshuo +1 位作者 GE Yang WEN Zhenming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期437-446,共10页
To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited pene... To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited penetrable visibility graph(LPVG)is proposed.Firstly,seven types of radar antenna scans are analyzed,which include the circular scan,sector scan,helical scan,raster scan,conical scan,electromechanical hybrid scan and two-dimensional electronic scan.Then,the time series of the pulse amplitude in the radar reconnaissance receiver is converted into an LPVG network,and the feature parameters are extracted.Finally,the recognition result is obtained by using a support vector machine(SVM)classifier.The experimental results show that the recognition accuracy and noise resistance of this new method are improved,where the average recognition accuracy for radar antenna type is at least 90%when the signalto-noise ratio(SNR)is 5 dB and above. 展开更多
关键词 antenna scan type limited penetrable visibility graph(LPVG) support vector machine(SVM) cognitive electronic warfare
在线阅读 下载PDF
基于BiLSTM-LSSVM的螺杆转子铣削加工廓形预测
4
作者 李佳 孙兴伟 +3 位作者 赵泓荀 穆士博 刘寅 杨赫然 《组合机床与自动化加工技术》 北大核心 2024年第9期153-156,162,共5页
针对螺杆转子盘铣刀加工过程中的轮廓预测问题,提出了基于双向长短时神经网络-最小二乘支持向量机(BiLSTM-LSSVM)的螺杆廓形预测方法。首先,对加工过程中的振动信号进行采集并进行降噪预处理,降噪后的信号进行降采样处理随后输入BiLSTM... 针对螺杆转子盘铣刀加工过程中的轮廓预测问题,提出了基于双向长短时神经网络-最小二乘支持向量机(BiLSTM-LSSVM)的螺杆廓形预测方法。首先,对加工过程中的振动信号进行采集并进行降噪预处理,降噪后的信号进行降采样处理随后输入BiLSTM中进行时序预测;其次,对时序预测后的信号进行特征提取,将提取后的特征向量输入LSSVM进行廓形预测;最后,以五头螺杆为例通过正交实验对BiLSTM-LSSVM模型进行试验验证,并对预测廓形进行误差补偿实验。实验结果表明,提出的基于BiLSTM-LSSVM的螺杆廓形预测模型可对螺杆转子盘铣刀加工螺杆廓形进行准确预测,进而为螺杆转子加工廓形补偿提供支持。 展开更多
关键词 螺杆转子 长短时神经网络 最小二乘支持向量机 廓形预测
在线阅读 下载PDF
直接快速迭代滤波分解的刀具磨损状态识别方法
5
作者 苗志滨 殷再航 +2 位作者 蒙占彬 丛晓红 崔哲 《机械科学与技术》 CSCD 北大核心 2024年第12期2123-2131,共9页
针对传统特征提取的刀具磨损状态识别不能充分表征振动信号磨损特征导致磨损状态识别精度不高的问题,提出了一种直接快速迭代滤波分解方法(Direct fast iterative filtering decomposition,dFIF)结合黏菌优化支持向量机(Slime mould alg... 针对传统特征提取的刀具磨损状态识别不能充分表征振动信号磨损特征导致磨损状态识别精度不高的问题,提出了一种直接快速迭代滤波分解方法(Direct fast iterative filtering decomposition,dFIF)结合黏菌优化支持向量机(Slime mould algorithm-Support vector machine,SMA-SVM)的刀具磨损状态识别方法。首先,通过直接快速迭代滤波分解方法(dFIF)对铣刀振动信号进行分解处理;其次,对分解产生的本征模态函数(Intrinsic mode function,IMF)使用加权稀疏峭度指标(Weighted sparseness kurtosis,WSK)进行计算评分,选择评分高的IMF进行降噪重构;最后,利用黏菌优化支持向量机(SMA-SVM)构建分类优化模型,将重构信号特征通过主成分分析(Principal component analysis,PCA)降维后输入优化模型,进行刀具磨损状态的分类识别。实验结果证明,提出的刀具磨损识别率高达99.8%,相比较于对比实验该方法能够快速、准确的识别铣刀的4种磨损状态,有一定的实践意义和研究价值。 展开更多
关键词 直接快速迭代滤波分解 刀具磨损识别 支持向量机 黏菌算法
在线阅读 下载PDF
基于多分类相关向量机的水电机组振动故障诊断 被引量:29
6
作者 易辉 梅磊 +2 位作者 李丽娟 刘宇芳 袁宇浩 《中国电机工程学报》 EI CSCD 北大核心 2014年第17期2843-2850,共8页
水电机组振动故障成因与故障征兆之间呈复杂的非线性关系,传统方法难以描述。当前研究常采用模式识别方法,如支持向量机、神经网络等实现振动故障诊断。该文在现有研究基础上,引进相关向量机(relevance vector machine,RVM)对诊断过程... 水电机组振动故障成因与故障征兆之间呈复杂的非线性关系,传统方法难以描述。当前研究常采用模式识别方法,如支持向量机、神经网络等实现振动故障诊断。该文在现有研究基础上,引进相关向量机(relevance vector machine,RVM)对诊断过程进行改进。相比传统方法,该文所提方法在学习过程中参数设置简单,在输出结果时给出了分类的可靠性,适合实际工程应用。同时,该方法在决策过程中,能够根据训练数据分布情况,自动选取决策结构,进一步提高诊断的速度与准确性。将该文所提诊断方法用于水电机组振动故障诊断实例,取得良好效果,验证了算法的有效性。 展开更多
关键词 相关向量机 水电机组 振动 故障诊断 多分类 决策导向图
在线阅读 下载PDF
基于结点优化的决策导向无环图支持向量机及其在故障诊断中的应用 被引量:22
7
作者 易辉 宋晓峰 +1 位作者 姜斌 王定成 《自动化学报》 EI CSCD 北大核心 2010年第3期427-432,共6页
支持向量机(Support vector machine,SVM)是利用离在线数据自动建立故障诊断模型的智能方法,它在多故障诊断时,必须先进行多分类扩展.决策导向无环图(Decision directed acyclic graph,DDAG)法是一种性能优秀的多分类扩展策略,但该方法... 支持向量机(Support vector machine,SVM)是利用离在线数据自动建立故障诊断模型的智能方法,它在多故障诊断时,必须先进行多分类扩展.决策导向无环图(Decision directed acyclic graph,DDAG)法是一种性能优秀的多分类扩展策略,但该方法的决策结果与结点的排部密切相关,而其结点的排部却是主观的,影响了诊断的正确率.本文提出一种根据故障数据的空间分布来优化结点排部的方法,它能够提高支持向量机诊断的正确率.采用该方法扩展的多分类支持向量机在变压器故障诊断中获得良好效果. 展开更多
关键词 支持向量机 故障诊断 多分类 决策导向无环图 结点优化
在线阅读 下载PDF
图像分割的新理论和新方法 被引量:147
8
作者 许新征 丁世飞 +1 位作者 史忠植 贾伟宽 《电子学报》 EI CAS CSCD 北大核心 2010年第B02期76-82,共7页
图像分割是是计算机视觉研究中的一个经典难题,已成为图像理解领域关注的一个热点.本文对近年来图像分割方法的研究现状与新进展进行了归纳总结.首先,简单介绍了图像分割的传统方法,包括基于区域的、基于边缘的和两者结合的图像分... 图像分割是是计算机视觉研究中的一个经典难题,已成为图像理解领域关注的一个热点.本文对近年来图像分割方法的研究现状与新进展进行了归纳总结.首先,简单介绍了图像分割的传统方法,包括基于区域的、基于边缘的和两者结合的图像分割方法.然后,分别从数学形态学、模糊集、神经网络、支持向量机、免疫算法、图论和粒度计算等方面对图像分割方法进行了重点讨论,并对应用每一种理论的最新研究进展作了评述.最后,对图像分割方法的发展趋势进行了展望. 展开更多
关键词 图像分割 粒度 免疫算法 图论 神经网络 支持向量机
在线阅读 下载PDF
基于SVM多类分类算法的模拟电路软故障诊断 被引量:12
9
作者 王安娜 邱增 +1 位作者 吴洁 曲福明 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第7期924-927,共4页
给出了基于支持向量机(SVM)1-v-1和决策导向无环图(decision directed acyclic graph,DDAG)多类分类算法的模拟电路软故障诊断新方法.DDAG是在1-v-1算法基础上构建的新的学习架构,在对多个SVM子分类器进行组合的过程中,引入了图论中有... 给出了基于支持向量机(SVM)1-v-1和决策导向无环图(decision directed acyclic graph,DDAG)多类分类算法的模拟电路软故障诊断新方法.DDAG是在1-v-1算法基础上构建的新的学习架构,在对多个SVM子分类器进行组合的过程中,引入了图论中有向无环图的思想.比较了采用不同核函数时支持向量机的分类结果.实验结果表明采用DDAG支持向量机(DAGSVM))多类分类算法时,诊断准确率为99%.因此,DAGSVM算法具有较高的诊断准确率. 展开更多
关键词 模拟电路 支持向量机 软故障诊断 核函数 决策导向无环图
在线阅读 下载PDF
基于节点选择优化的DAG-SVM多类别分类 被引量:9
10
作者 沈健 蒋芸 +2 位作者 邹丽 陈娜 胡学伟 《计算机工程》 CAS CSCD 北大核心 2015年第6期143-146,共4页
有向无环图支持向量机(DAG-SVM)对于N类别分类问题,会构造N×(N-1)/2个支持向量机分类器(为每2个类构造一个支持向量机),DAG-SVM可能出现由于节点选择不佳而导致整个分类器分类结果较差的情况。为此,提出一种改进的DAG-SVM。通过为... 有向无环图支持向量机(DAG-SVM)对于N类别分类问题,会构造N×(N-1)/2个支持向量机分类器(为每2个类构造一个支持向量机),DAG-SVM可能出现由于节点选择不佳而导致整个分类器分类结果较差的情况。为此,提出一种改进的DAG-SVM。通过为每一层建立备选节点集合进行节点选择,选取下层备选节点集合中训练分类精度最高的一个节点组合作为当前层节点的下层节点,从而优化DAG-SVM的拓扑结构。实验结果表明,与已有的DAG-SVM,1-vs-1SVM,1-vs-a SVM方法相比,该方法的分类精度较高。 展开更多
关键词 有向无环图支持向量机 分类器 多类别分类 节点选择优化 备选节点
在线阅读 下载PDF
有向无环图的多类支持向量机分类算法 被引量:13
11
作者 王艳 陈欢欢 沈毅 《电机与控制学报》 EI CSCD 北大核心 2011年第4期85-89,共5页
为研究基于有向无环图的支持向量机分类算法以及在故障诊断问题中的应用,考虑到有向无环图的结构运算相当于一个表操作,且分类结果依赖于有向无环图中节点的排列顺序,提出一种分类算法,该算法引入基于类分布的类间分离性测度,估计各类... 为研究基于有向无环图的支持向量机分类算法以及在故障诊断问题中的应用,考虑到有向无环图的结构运算相当于一个表操作,且分类结果依赖于有向无环图中节点的排列顺序,提出一种分类算法,该算法引入基于类分布的类间分离性测度,估计各类训练数据间的分布性质,建立初始操作表单,将样本所有可能的类别按照一定顺序排列在表单中,从而重新组合有向无环图中的节点顺序,构造基于分离性测度的有向无环图的拓扑结构。通过对3个典型数据集的数值仿真研究,结果表明所提算法的性能优于传统算法。 展开更多
关键词 支持向量机 有向无环图 分离性测度 故障诊断
在线阅读 下载PDF
基于聚类改进S变换与直接支持向量机的电能质量扰动识别 被引量:33
12
作者 徐志超 杨玲君 李晓明 《电力自动化设备》 EI CSCD 北大核心 2015年第7期50-58,73,共10页
针对电能质量扰动信号的识别问题,提出基于聚类改进S变换与直接支持向量机(SVM)的电能质量扰动识别方法。提出聚类改进S变换方法,该方法结合电能质量扰动信号的特点,可同时对基频的时域分辨率及高频的频域分辨率进行最优化处理,保证特... 针对电能质量扰动信号的识别问题,提出基于聚类改进S变换与直接支持向量机(SVM)的电能质量扰动识别方法。提出聚类改进S变换方法,该方法结合电能质量扰动信号的特点,可同时对基频的时域分辨率及高频的频域分辨率进行最优化处理,保证特征提取的准确性;将直接支持向量机作为分类器,与最小二乘支持向量机相比,其求解简单,计算复杂度较低,训练与测试速度快,泛化能力较高,并且避免不能保证全局最优解的缺点;将聚类改进S变换与直接支持向量机相结合,应用于单一扰动及混合扰动的识别分类工作。仿真实验验证了所提方法的有效性。 展开更多
关键词 电能质量 扰动识别 聚类改进S变换 直接支持向量机 支持向量机
在线阅读 下载PDF
基于运动方向的异常行为检测 被引量:25
13
作者 胡芝兰 江帆 +2 位作者 王贵锦 林行刚 严洪 《自动化学报》 EI CSCD 北大核心 2008年第11期1348-1357,共10页
提出了一种基于运动方向的异常行为检测方法.根据不同行为的运动方向具有不同的规律性,该方法采用块运动方向描述不同的动作,并利用支持向量机(Support vector machine,SVM)对实时监控视频进行异常行为检测.为了减少噪声运动的影响,同... 提出了一种基于运动方向的异常行为检测方法.根据不同行为的运动方向具有不同的规律性,该方法采用块运动方向描述不同的动作,并利用支持向量机(Support vector machine,SVM)对实时监控视频进行异常行为检测.为了减少噪声运动的影响,同时有效保留小幅度运动的前景目标,在行为描述之前,本文采用了背景边缘模型对每一视频帧进行前景帧(有目标出现的视频帧)判断.在行为描述时,先提取相应视频段的所有前景帧的块运动方向,然后对这些运动方向进行归一化直方图统计得到该视频段的行为特征.在走廊等公共场景中的实验结果表明,该方法能够对单人以及多人的复杂行为进行有效检测,对运动过程中目标大小的变化、光照的变化以及噪声等具有较好的鲁棒性,而且计算复杂度小,能够实现实时监控. 展开更多
关键词 视频监控 异常检测 前景分割 运动方向 支持向量机
在线阅读 下载PDF
基于STFT变换和DAGSVMs的电能质量扰动识别 被引量:24
14
作者 覃思师 刘前进 《电力系统保护与控制》 EI CSCD 北大核心 2011年第1期83-86,103,共5页
提出了一种基于短时傅里叶变换和DAG(Directed Acyclic Graph)支持向量机的电能质量扰动检测和识别方法。将扰动信号通过Blackman窗短时傅里叶变换,得出时域最大幅值向量,然后把它作为特征向量输入到DAG支持向量机来实现电能质量扰动类... 提出了一种基于短时傅里叶变换和DAG(Directed Acyclic Graph)支持向量机的电能质量扰动检测和识别方法。将扰动信号通过Blackman窗短时傅里叶变换,得出时域最大幅值向量,然后把它作为特征向量输入到DAG支持向量机来实现电能质量扰动类型的识别。其中,时域最大幅值向量不仅能反映各种扰动的特征,还能显示电压突升、电压暂降、电压中断和暂态振荡等扰动的发生时刻和持续时间。仿真测试表明,该方法能有效识别各种电能质量扰动,而且识别正确率高,训练时间短,实时性能较好。 展开更多
关键词 短时傅里叶变换 Blackman窗 特征提取 支持向量机 DAG
在线阅读 下载PDF
基于支持向量机和多源信息的直驱风力发电机组故障诊断 被引量:47
15
作者 安学利 赵明浩 +1 位作者 蒋东翔 李少华 《电网技术》 EI CSCD 北大核心 2011年第4期117-122,共6页
提出了一种综合考虑风速、转速以及主轴水平方向和垂直方向振动的时域特征参数、频域特征参数等多源信息的基于支持向量机(support vector machine,SVM)的直驱风力发电机组故障诊断方法。对直驱风电机组正常状态、风轮质量不平衡、风轮... 提出了一种综合考虑风速、转速以及主轴水平方向和垂直方向振动的时域特征参数、频域特征参数等多源信息的基于支持向量机(support vector machine,SVM)的直驱风力发电机组故障诊断方法。对直驱风电机组正常状态、风轮质量不平衡、风轮气动不平衡、偏航和断叶片等5种状态进行实验分析,研究不同状态下的机组特征。根据实验分析结论,将风电机组主轴水平方向、垂直方向振动的时域参数、频域参数以及风速、转速选为描述机组运行状态的特征参数,对机组进行故障识别。将风电机组5种状态下的特征参数作为学习样本,在SVM中训练,建立不同特征的参数向量和故障类型的映射关系,从而达到故障诊断的目的。根据风电机组不同故障的实验数据,对考虑多源信息的故障模型进行应用检验。结果表明,该方法简单有效,具有很好的故障识别能力和良好的鲁棒性,适合直驱风电机组故障诊断,同时可以满足在线故障诊断的要求。 展开更多
关键词 直驱风力发电机组 故障实验 多源信息 支持向 量机 故障诊断
在线阅读 下载PDF
相关向量机在光纤预警系统模式识别中的应用 被引量:7
16
作者 孙茜 曾周末 李健 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2014年第12期1115-1120,共6页
由于传统模式识别方法存在过学习、训练时间长等缺陷,不能满足光纤预警系统实时在线监测的要求.相关向量机能够克服传统方法的缺点,识别精度高,向量机个数需求少,因此,将相关向量机应用于光纤预警系统模式识别中,采用小波能谱和小波信... 由于传统模式识别方法存在过学习、训练时间长等缺陷,不能满足光纤预警系统实时在线监测的要求.相关向量机能够克服传统方法的缺点,识别精度高,向量机个数需求少,因此,将相关向量机应用于光纤预警系统模式识别中,采用小波能谱和小波信息熵的特征提取方法,在测试阶段采用有向无环图的方法进行多类识别.通过对威胁管道安全的事件进行实验,识别精度达到92.67%,向量机个数只有2个,验证了相关向量机方法应用于光纤预警系统的可行性和有效性. 展开更多
关键词 光纤预警 模式识别 相关向量机 有向无环图
在线阅读 下载PDF
基于有向无环图支持向量机的水轮发电机组故障诊断模型 被引量:9
17
作者 兰飞 唐玲 《电网技术》 EI CSCD 北大核心 2010年第2期115-119,共5页
提高水轮机组的状态监测与故障诊断系统的准确性和及时性,对电力系统的安全运行具有重大意义。针对神经网络收敛速度慢、容易陷入局部最优解等不足,提出了一种基于有向无环图支持向量机方法的水轮发电机组故障诊断方法。该方法能有效解... 提高水轮机组的状态监测与故障诊断系统的准确性和及时性,对电力系统的安全运行具有重大意义。针对神经网络收敛速度慢、容易陷入局部最优解等不足,提出了一种基于有向无环图支持向量机方法的水轮发电机组故障诊断方法。该方法能有效解决小样本、高维数、非线性等问题,从而能在较短的时间内准确地诊断故障。 展开更多
关键词 水轮发电机组 故障诊断 支持向量机 有向无环图 多分类支持向量机
在线阅读 下载PDF
基于鱼眼镜头的全方位视觉参数标定与畸变矫正 被引量:33
18
作者 冯为嘉 张宝峰 曹作良 《天津大学学报》 EI CAS CSCD 北大核心 2011年第5期417-424,共8页
针对利用鱼眼镜头构建的全方位视觉系统研究内外部参数标定及图像畸变矫正方法,建立成像系统模型,提出成像系统中需要标定的内、外部参数;采用改进的线性标定法标定图像中心,研究径向畸变系数及其他参数的标定方法;在参数标定的基础上,... 针对利用鱼眼镜头构建的全方位视觉系统研究内外部参数标定及图像畸变矫正方法,建立成像系统模型,提出成像系统中需要标定的内、外部参数;采用改进的线性标定法标定图像中心,研究径向畸变系数及其他参数的标定方法;在参数标定的基础上,分别利用等距投影和支持向量机训练方法,对图像中的像素点及整幅鱼眼图像进行畸变矫正.实验证明,研究的标定方法可准确地标定出视觉系统的内外部参数;基于等距投影的像素点矫正可应用于精确定位视觉系统的空间位置;基于支持向量机训练方法的全图像畸变矫正可获得理想的鱼眼图像矫正效果,所提出的参数标定和畸变矫正方法将有利于与鱼眼镜头在机器视觉领域的应用. 展开更多
关键词 全方位视觉 鱼眼镜头 参数标定 畸变矫正 支持向量机
在线阅读 下载PDF
一种支持向量聚类的快速算法 被引量:11
19
作者 吕常魁 姜澄宇 王宁生 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第1期6-9,共4页
为了降低支持向量聚类 (SupportVectorClustering ,SVC)的运算复杂性 ,基于Yang等提出的邻近图法 ,用Mercer核来表达Hilbert空间中的Euclidean距离 ,以此作为边的权重度量来生成最小生成树 (MinimumSpanningTree ,MST) ,并只对MST的主... 为了降低支持向量聚类 (SupportVectorClustering ,SVC)的运算复杂性 ,基于Yang等提出的邻近图法 ,用Mercer核来表达Hilbert空间中的Euclidean距离 ,以此作为边的权重度量来生成最小生成树 (MinimumSpanningTree ,MST) ,并只对MST的主干进行SVC连接运算 .文中还定义了不相容性度量 ,并将其作为SVC连接运算中边的选择依据 .试验证明 ,改进后算法的运行速度及聚类效果均优于邻近图法 ,特别是对大数据集的处理具有明显的优势 ,且具有一定的抗噪能力 . 展开更多
关键词 支持向量机 支持向量聚类 邻近图 最小生成树
在线阅读 下载PDF
基于支持向量机的旋转机械故障诊断。 被引量:21
20
作者 赵冲冲 廖明夫 于潇 《振动.测试与诊断》 EI CSCD 2006年第1期53-57,共5页
把支持向量机应用于诊断旋转机械不平衡和转静碰摩故障,利用转子故障实验器分别对多项式和径向基核函数进行了实验比较,选取了不同振动参数作为特征量输入支持向量机进行学习和测试。结果表明,两种不同核函数的支持向量机在各种条件下... 把支持向量机应用于诊断旋转机械不平衡和转静碰摩故障,利用转子故障实验器分别对多项式和径向基核函数进行了实验比较,选取了不同振动参数作为特征量输入支持向量机进行学习和测试。结果表明,两种不同核函数的支持向量机在各种条件下所获得的最优故障诊断准确率很接近。这说明支持向量机的性能对结构(核函数)的依赖性很小,便于在工程中应用,但特征量的选取对故障诊断准确率影响很大。对于诊断不平衡和转静碰摩故障,一、二和三阶正、反进动量是最适合的故障诊断特征量。用正、反进动量构造出SV-进动图,可明确、形象地显示故障分类面,有助于诊断故障。 展开更多
关键词 旋转机械 故障诊断 支持向量机 SV-进动图
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部