Causality,the science of cause and effect,has made it possible to create a new family of models.Such models are often referred to as causal models.Unlike those of mathematical,numerical,empirical,or machine learning(M...Causality,the science of cause and effect,has made it possible to create a new family of models.Such models are often referred to as causal models.Unlike those of mathematical,numerical,empirical,or machine learning(ML)nature,causal models hope to tie the cause(s)to the effect(s)pertaining to a phenomenon(i.e.,data generating process)through causal principles.This paper presents one of the first works at creating causal models in the area of structural and construction engineering.To this end,this paper starts with a brief review of the principles of causality and then adopts four causal discovery algorithms,namely,PC(Peter-Clark),FCI(fast causal inference),GES(greedy equivalence search),and GRa SP(greedy relaxation of the sparsest permutation),have been used to examine four phenomena,including predicting the load-bearing capacity of axially loaded members,fire resistance of structural members,shear strength of beams,and resistance of walls against impulsive(blast)loading.Findings from this study reveal the possibility and merit of discovering complete and partial causal models.Finally,this study also proposes two simple metrics that can help assess the performance of causal discovery algorithms.展开更多
The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the l...The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the low probability of intercept(LPI)radar.This paper explores the usefulness of such an algorithm in the scenario of LPI radar signal detection and recognition based on visibility graphs(VG).More network and feature information can be extracted in the VG two-dimensional space,this algorithm can solve the problem of signal recognition using the autocorrelation function.Wavelet denoising processing is introduced into the signal to be tested,and the denoised signal is converted to the VG domain.Then,the signal detection is performed by using the constant false alarm of the VG average degree.Next,weight the converted graph.Finally,perform feature extraction on the weighted image,and use the feature to complete the recognition.It is testified that the proposed algorithm offers significant improvements,such as robustness to noise,and the detection and recognition accuracy,over the recent researches.展开更多
To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited pene...To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited penetrable visibility graph(LPVG)is proposed.Firstly,seven types of radar antenna scans are analyzed,which include the circular scan,sector scan,helical scan,raster scan,conical scan,electromechanical hybrid scan and two-dimensional electronic scan.Then,the time series of the pulse amplitude in the radar reconnaissance receiver is converted into an LPVG network,and the feature parameters are extracted.Finally,the recognition result is obtained by using a support vector machine(SVM)classifier.The experimental results show that the recognition accuracy and noise resistance of this new method are improved,where the average recognition accuracy for radar antenna type is at least 90%when the signalto-noise ratio(SNR)is 5 dB and above.展开更多
文摘Causality,the science of cause and effect,has made it possible to create a new family of models.Such models are often referred to as causal models.Unlike those of mathematical,numerical,empirical,or machine learning(ML)nature,causal models hope to tie the cause(s)to the effect(s)pertaining to a phenomenon(i.e.,data generating process)through causal principles.This paper presents one of the first works at creating causal models in the area of structural and construction engineering.To this end,this paper starts with a brief review of the principles of causality and then adopts four causal discovery algorithms,namely,PC(Peter-Clark),FCI(fast causal inference),GES(greedy equivalence search),and GRa SP(greedy relaxation of the sparsest permutation),have been used to examine four phenomena,including predicting the load-bearing capacity of axially loaded members,fire resistance of structural members,shear strength of beams,and resistance of walls against impulsive(blast)loading.Findings from this study reveal the possibility and merit of discovering complete and partial causal models.Finally,this study also proposes two simple metrics that can help assess the performance of causal discovery algorithms.
基金This work was supported by the National Defence Pre-research Foundation of China(30502010103).
文摘The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the low probability of intercept(LPI)radar.This paper explores the usefulness of such an algorithm in the scenario of LPI radar signal detection and recognition based on visibility graphs(VG).More network and feature information can be extracted in the VG two-dimensional space,this algorithm can solve the problem of signal recognition using the autocorrelation function.Wavelet denoising processing is introduced into the signal to be tested,and the denoised signal is converted to the VG domain.Then,the signal detection is performed by using the constant false alarm of the VG average degree.Next,weight the converted graph.Finally,perform feature extraction on the weighted image,and use the feature to complete the recognition.It is testified that the proposed algorithm offers significant improvements,such as robustness to noise,and the detection and recognition accuracy,over the recent researches.
基金supported by the China Postdoctoral Science Foundation(2015M572694,2016T90979).
文摘To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited penetrable visibility graph(LPVG)is proposed.Firstly,seven types of radar antenna scans are analyzed,which include the circular scan,sector scan,helical scan,raster scan,conical scan,electromechanical hybrid scan and two-dimensional electronic scan.Then,the time series of the pulse amplitude in the radar reconnaissance receiver is converted into an LPVG network,and the feature parameters are extracted.Finally,the recognition result is obtained by using a support vector machine(SVM)classifier.The experimental results show that the recognition accuracy and noise resistance of this new method are improved,where the average recognition accuracy for radar antenna type is at least 90%when the signalto-noise ratio(SNR)is 5 dB and above.