In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cell...In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge^Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.展开更多
In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the disc...In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the discrete mass conservations corresponding to the properties of the CNLS system. The ordinary differential equations obtained by the DDG space discretization is solved via a third-order stabilized Runge Kutta method. Numerical experiments show that the new DDG scheme gives stable and less diffusive results and has excellent long-time numerical behaviors for the CNLS equations.展开更多
In this work,we present the direct discontinuous Galerkin(DDG) method for the one-dimensional coupled nonlinear Schrdinger(CNLS) equation.We prove that the new discontinuous Galerkin method preserves the discrete mass...In this work,we present the direct discontinuous Galerkin(DDG) method for the one-dimensional coupled nonlinear Schrdinger(CNLS) equation.We prove that the new discontinuous Galerkin method preserves the discrete mass conservations corresponding to the properties of the CNLS system.The ordinary differential equations obtained by the DDG space discretization is solved via a third-order stabilized Runge-Kutta method.Numerical experiments show that the new DDG scheme gives stable and less diffusive results and has excellent long-time numerical behaviors for the CNLS equations.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61105130 and 61175124)
文摘In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge^Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.
基金Project supported by the National Natural Science Foundation of China (Grant No 11171038).
文摘In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the discrete mass conservations corresponding to the properties of the CNLS system. The ordinary differential equations obtained by the DDG space discretization is solved via a third-order stabilized Runge Kutta method. Numerical experiments show that the new DDG scheme gives stable and less diffusive results and has excellent long-time numerical behaviors for the CNLS equations.
基金Project supported by the National Natural Science Foundation of China (Grant No 11171038)
文摘In this work,we present the direct discontinuous Galerkin(DDG) method for the one-dimensional coupled nonlinear Schrdinger(CNLS) equation.We prove that the new discontinuous Galerkin method preserves the discrete mass conservations corresponding to the properties of the CNLS system.The ordinary differential equations obtained by the DDG space discretization is solved via a third-order stabilized Runge-Kutta method.Numerical experiments show that the new DDG scheme gives stable and less diffusive results and has excellent long-time numerical behaviors for the CNLS equations.