Low-level radio frequency(LLRF)systems stabilize the electromagnetic field in the RF cavities used for beam acceleration in particle accelerators.Reliable,accurate,and precise detection of RF amplitude and phase is pa...Low-level radio frequency(LLRF)systems stabilize the electromagnetic field in the RF cavities used for beam acceleration in particle accelerators.Reliable,accurate,and precise detection of RF amplitude and phase is particularly important to achieve high field stability for pulsed accelerators of free-electron lasers(FEL).The digital LLRF systems employ analog-to-digital converters to sample the frequency down-converted RF signal and use digital demodulation algorithms to calculate the RF amplitude and phase.Different sampling strategies and demodulation algorithms have been developed for these purposes and are introduced in this paper.This article focuses on advanced topics concerning RF detection,including accurate RF transient measurement,wideband RF detection,and RF detection with an asynchronous trigger,local oscillator,or clock.The analysis is based on the SwissFEL measurements,but the algorithms introduced are general for RF signal detection in particle accelerators.展开更多
Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge densit...Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge density of the bench.In the phaseⅡupgrade of the SSRF,a third harmonic superconducting cavity will be used to enhance the Touschek lifetime by lengthening the bunches.The Touschek lifetime improvement factor is affected by the voltage of a harmonic cavity.To stabilize the cavity voltage,a tuning control system was designed to control it.The design of the tuning control system was based on the SSRF third-generation low-level RF control system.Some hardware and specialized algorithms were redesigned to fit the harmonic cavity control.The design of the tuning control system is complete,and the control system has been tested.The test result shows that the fluctuation of amplitude is<±0.34%within 1.5 h,which satisfies the stability requirement.展开更多
文摘Low-level radio frequency(LLRF)systems stabilize the electromagnetic field in the RF cavities used for beam acceleration in particle accelerators.Reliable,accurate,and precise detection of RF amplitude and phase is particularly important to achieve high field stability for pulsed accelerators of free-electron lasers(FEL).The digital LLRF systems employ analog-to-digital converters to sample the frequency down-converted RF signal and use digital demodulation algorithms to calculate the RF amplitude and phase.Different sampling strategies and demodulation algorithms have been developed for these purposes and are introduced in this paper.This article focuses on advanced topics concerning RF detection,including accurate RF transient measurement,wideband RF detection,and RF detection with an asynchronous trigger,local oscillator,or clock.The analysis is based on the SwissFEL measurements,but the algorithms introduced are general for RF signal detection in particle accelerators.
文摘Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge density of the bench.In the phaseⅡupgrade of the SSRF,a third harmonic superconducting cavity will be used to enhance the Touschek lifetime by lengthening the bunches.The Touschek lifetime improvement factor is affected by the voltage of a harmonic cavity.To stabilize the cavity voltage,a tuning control system was designed to control it.The design of the tuning control system was based on the SSRF third-generation low-level RF control system.Some hardware and specialized algorithms were redesigned to fit the harmonic cavity control.The design of the tuning control system is complete,and the control system has been tested.The test result shows that the fluctuation of amplitude is<±0.34%within 1.5 h,which satisfies the stability requirement.