A combined computational and experimental investigation to examine temperature and soot volume fraction in coflow ethylene-air diffusion flames was presented.A numerical simulation was conducted by using a relatively ...A combined computational and experimental investigation to examine temperature and soot volume fraction in coflow ethylene-air diffusion flames was presented.A numerical simulation was conducted by using a relatively detailed gas-phase chemistry and complex thermal and transport properties coupled with a semi-empirical two-equation soot model.Thermal radiation was calculated using the discrete ordinates method.An image processing technique and a decoupled reconstruction method were used to simultaneously measure the distributions of temperature and soot volume fraction.The results show that the maximum error for temperature does not exceed 10% between the prediction and the measurement.And the maximum error is 6.9% for soot volume fraction between prediction and measurement.Additional simulations were performed to explore the effects of global equivalence ratio on diffusion flames and the soot formation.The results display that the soot formation increases with decreasing the coflow air velocity.And the soot formation in each case appears in the annular region,where the temperature ranges from about 1 000 K to 2 000 K and the profile becomes taller and wider when the coflow air is decreased.展开更多
The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas ...The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas the peak OH mass fraction increases significantly under normal gravity(g=9.8 m/s^2).For a very low jet velocity(e.g.,V=0.1 m/s),both the peak OH mass fraction and flame temperature under g=9.8 m/s^2 are lower than the counterparts under g=0 m/s^2.Analysis reveals that when V≥0.2 m/s,fuel/air mixing will be promoted and combustion will be intensified due to radial flow caused by the buoyancy effect.However,the flame temperature will be slightly decreased owing to the large amount of entrainment of cold air into the reaction zone.For V=0.1 m/s,since the heat release rate is very low,the entrainment of cold air and fuel leakage from the rim of tube exit lead to a significant drop of flame temperature.Meanwhile,the heat loss rate from fuel to inner tube wall is larger under g=9.8 m/s^2 compared to that under g=0 m/s^2.Therefore,the buoyancy effect is overall negative at very low jet velocities.展开更多
In order to provide guideline for choosing a suitable tube-wall thickness(d)for the micro-jet methane diffusion flame,the effect of tube-wall thickness on the blow-off limit is investigated via numerical simulation in...In order to provide guideline for choosing a suitable tube-wall thickness(d)for the micro-jet methane diffusion flame,the effect of tube-wall thickness on the blow-off limit is investigated via numerical simulation in the present work.The results show that the blow-off limit of micro-jet methane diffusion flame firstly increases and then decreases with the increase of tube-wall thickness.Subsequently,the underlying mechanisms responsible for the above non-monotonic blow-off limit are discussed in terms of the flow filed,strain effect and conjugate heat exchange.The analysis indicates that the flow field is insignificant for the non-monotonic blow-off limit.A smaller strain effect can induce the increase of the blow-off limit fromd=0.1 to 0.2 mm,and a worse heat recirculation effect can induce the decrease of the blow-off limit fromd=0.2 to 0.4 mm.The non-monotonic blow-off limit is mainly determined by the heat loss of flame to the tube-wall and the performance of tube-wall on preheating unburned fuel.The smallest heat loss of flame to the tube-wall and the best performance of tube-wall on preheating unburned fuel result in the largest blow-off limit atd=0.2 mm.Therefore,a moderate tube-wall thickness is more suitable to manufacture the micro-jet burner.展开更多
Biodiesel is a kind of clean and renewable energy. The effect of ethanol addition on the flame characteristics of waste oil biodiesel is studied by using OH-PLIF technique from the perspective of OH radical evolution....Biodiesel is a kind of clean and renewable energy. The effect of ethanol addition on the flame characteristics of waste oil biodiesel is studied by using OH-PLIF technique from the perspective of OH radical evolution. Ethanol addition leads to the appearance of diffusion flame reaction interface ahead of schedule and shortens the diffusion flame height. The experimental results show a linear correlation between the flame height and the fuel flow rate for a given fuel and oxidant. The same conclusion is drawn from the theoretical analysis of the approximate model. In addition. ethanol addition makes the average OH signal intensity of flame at different fuel flow rate tend to be consistent and the fuel flow rate enlarge where the flame field shows the strongest oxidation performance. Average OH signal intensity begins to weaken at larger fuel flow rate, which indicates that fuel flow rate of fuels blended with ethanol can change in larger range and does not significantly affect the uniformity of combustion.展开更多
基金Projects(50806024,50806023 and 50806026) supported by the National Natural Science Foundation of China
文摘A combined computational and experimental investigation to examine temperature and soot volume fraction in coflow ethylene-air diffusion flames was presented.A numerical simulation was conducted by using a relatively detailed gas-phase chemistry and complex thermal and transport properties coupled with a semi-empirical two-equation soot model.Thermal radiation was calculated using the discrete ordinates method.An image processing technique and a decoupled reconstruction method were used to simultaneously measure the distributions of temperature and soot volume fraction.The results show that the maximum error for temperature does not exceed 10% between the prediction and the measurement.And the maximum error is 6.9% for soot volume fraction between prediction and measurement.Additional simulations were performed to explore the effects of global equivalence ratio on diffusion flames and the soot formation.The results display that the soot formation increases with decreasing the coflow air velocity.And the soot formation in each case appears in the annular region,where the temperature ranges from about 1 000 K to 2 000 K and the profile becomes taller and wider when the coflow air is decreased.
基金Project(51576084)supported by the National Natural Science Foundation of China。
文摘The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas the peak OH mass fraction increases significantly under normal gravity(g=9.8 m/s^2).For a very low jet velocity(e.g.,V=0.1 m/s),both the peak OH mass fraction and flame temperature under g=9.8 m/s^2 are lower than the counterparts under g=0 m/s^2.Analysis reveals that when V≥0.2 m/s,fuel/air mixing will be promoted and combustion will be intensified due to radial flow caused by the buoyancy effect.However,the flame temperature will be slightly decreased owing to the large amount of entrainment of cold air into the reaction zone.For V=0.1 m/s,since the heat release rate is very low,the entrainment of cold air and fuel leakage from the rim of tube exit lead to a significant drop of flame temperature.Meanwhile,the heat loss rate from fuel to inner tube wall is larger under g=9.8 m/s^2 compared to that under g=0 m/s^2.Therefore,the buoyancy effect is overall negative at very low jet velocities.
基金Project(51876074)supported by the National Natural Science Foundation of China。
文摘In order to provide guideline for choosing a suitable tube-wall thickness(d)for the micro-jet methane diffusion flame,the effect of tube-wall thickness on the blow-off limit is investigated via numerical simulation in the present work.The results show that the blow-off limit of micro-jet methane diffusion flame firstly increases and then decreases with the increase of tube-wall thickness.Subsequently,the underlying mechanisms responsible for the above non-monotonic blow-off limit are discussed in terms of the flow filed,strain effect and conjugate heat exchange.The analysis indicates that the flow field is insignificant for the non-monotonic blow-off limit.A smaller strain effect can induce the increase of the blow-off limit fromd=0.1 to 0.2 mm,and a worse heat recirculation effect can induce the decrease of the blow-off limit fromd=0.2 to 0.4 mm.The non-monotonic blow-off limit is mainly determined by the heat loss of flame to the tube-wall and the performance of tube-wall on preheating unburned fuel.The smallest heat loss of flame to the tube-wall and the best performance of tube-wall on preheating unburned fuel result in the largest blow-off limit atd=0.2 mm.Therefore,a moderate tube-wall thickness is more suitable to manufacture the micro-jet burner.
基金Project(51766007)supported by the National Natural Science Foundation of ChinaProject(U1602272)supported by the NSFC-Yunnan Joint Fund Project+1 种基金Project(2015FB128)supported by the Natural Science Fund Project in Yunnan Province,ChinaProject(CNMRCUTS1704)supported by the Research Fund from State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,China
文摘Biodiesel is a kind of clean and renewable energy. The effect of ethanol addition on the flame characteristics of waste oil biodiesel is studied by using OH-PLIF technique from the perspective of OH radical evolution. Ethanol addition leads to the appearance of diffusion flame reaction interface ahead of schedule and shortens the diffusion flame height. The experimental results show a linear correlation between the flame height and the fuel flow rate for a given fuel and oxidant. The same conclusion is drawn from the theoretical analysis of the approximate model. In addition. ethanol addition makes the average OH signal intensity of flame at different fuel flow rate tend to be consistent and the fuel flow rate enlarge where the flame field shows the strongest oxidation performance. Average OH signal intensity begins to weaken at larger fuel flow rate, which indicates that fuel flow rate of fuels blended with ethanol can change in larger range and does not significantly affect the uniformity of combustion.