The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV(particle image velocimetry)and pressure probe traverses.PIV measurements have alread...The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV(particle image velocimetry)and pressure probe traverses.PIV measurements have already been performed at middle height inside one diffuser channel passage for a given speed of rotation and various mass flow rates.These results have been already presented in several previous communications.New experiments have been performed using a three-hole pressure probe traverses from hub to shroud diffuser width at different radial locations between the two diffuser geometrical throats.Numerical simulations are also realized with the commercial codes Star CCM+7.02.011 and CFX.Frozen rotor and fully unsteady calculations of the whole pump have been performed.Comparisons between numerical results,previous experimental PIV results and new probe traverses one's are presented and discussed for one mass flow rate.In this respect,a first attempt to take into account fluid leakages between the rotating and fixed part of the pump has been checked since it may affects the real flow structure inside the diffuser.展开更多
The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence mod...The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence model and pressure Poisson equation were discretized by upwind difference scheme.A new full implicit difference scheme of 5-point was constructed by using finite volume method and finite difference method.A large sparse matrix with five diagonals was formed and was stored by three arrays of one dimension in a compressed mode.General iterative methods do not work wel1 with large sparse matrix.With algebraic multigrid method(AMG),linear algebraic system of equations was solved and the precision was set at 10-6.The computation results were compared with the experimental results.The results show that the computation results have a good agreement with the experiment data.The precision of computational results and numerical simulation efficiency are greatly improved.展开更多
Based on microstructure analysis,diffusion theory,and hot deformation experiments,the solidification microstructure and element segregation of the Alloy 625 Plus ingot,the diffusion kinetics of Ti,Nb,and Mo during hom...Based on microstructure analysis,diffusion theory,and hot deformation experiments,the solidification microstructure and element segregation of the Alloy 625 Plus ingot,the diffusion kinetics of Ti,Nb,and Mo during homogenization and the hot deformation behavior of the homogenized ingot were investigated in this study.The results indicate that:(1)the solidified ingot exhibits a typical dendritic microstructure,and significant element segregation occurs,leading to the presence of Ti,Nb,and Mo-rich precipitates in the interdendritic region;(2)Following homogenization,the degree of element segregation in the ingot is significantly reduced.The diffusion coefficients(D)of Ti,Nb,and Mo under various homogenization conditions were calculated.Subsequently,the diffusion constants(D_(0))and activation energies(Q)of Ti,Nb,and Mo were obtained to be 0.01432,0.00397 and 0.00195 cm^(2)/s and 244.851,230.312,and 222.125 kJ/mol,respectively.Finally,the diffusion kinetics formulas for Ti,Nb,and Mo in Alloy 625 Plus were established.After homogenization at 1220℃for 8 h,the alloy exhibits low deformation resistance,a high degree of recrystallization,and optimal deformation coordination ability.Therefore,this represents a rational single-stage homogenization process.展开更多
Recently,foamed polymers have been widely used in the repair of underground engineering disasters by grouting(trenchless technology)due to controllable gelation time and self-expansion.However,the grouting process bec...Recently,foamed polymers have been widely used in the repair of underground engineering disasters by grouting(trenchless technology)due to controllable gelation time and self-expansion.However,the grouting process becomes more complicated due to the complex geological conditions and the self-expansion of slurry.Therefore,this paper adopts a self-made visual experimental device with peripheral pressure and water plugging rate(WPR)monitoring functions to study the influence of main influencing parameters(particle size distribution,grouting amount and dynamic water pump pressure(DWPP))on the spatiotemporal distribution of slurry WPR and diffusion dynamic response(peripheral pressure).The results show that:When grouting amount is 563 g and DWPP is 0.013 MPa,the expansion force of the slurry in the diffusion process is dominant and can significantly change the local sand and gravel skeleton structure.When grouting amount is 563 g,DWPP is 0.013 MPa,and particle size distribution type isⅢ,the flow time of the polymer is shortened,the pores of the gravel are rapidly blocked.Then,the peripheral pressure decreases rapidly with the increase of the distance,and the time to reach the inflection point WPR is shortened.The instantaneous blockage of the pores leads to the delayed transmission of flow field blockage information.展开更多
In this study, to meet the development and application requirements for high-strength and hightoughness energetic structural materials, a representative volume element of a TA15 matrix embedded with a TaZrNb sphere wa...In this study, to meet the development and application requirements for high-strength and hightoughness energetic structural materials, a representative volume element of a TA15 matrix embedded with a TaZrNb sphere was designed and fabricated via diffusion bonding. The mechanisms of the microstructural evolution of the TaZrNb/TA15 interface were investigated via SEM, EBSD, EDS, and XRD.Interface mechanical property tests and in-situ tensile tests were conducted on the sphere-containing structure, and an equivalent tensile-strength model was established for the structure. The results revealed that the TA15 titanium alloy and joint had high density and no pores or cracks. The thickness of the planar joint was approximately 50-60 μm. The average tensile and shear strengths were 767 MPa and 608 MPa, respectively. The thickness of the spherical joint was approximately 60 μm. The Zr and Nb elements in the joint diffused uniformly and formed strong bonds with Ti without forming intermetallic compounds. The interface exhibited submicron grain refinement and a concave-convex interlocking structure. The tensile fracture surface primarily exhibited intergranular fracture combined with some transgranular fracture, which constituted a quasi-brittle fracture mode. The shear fracture surface exhibited brittle fracture with regular arrangements of furrows. Internal fracture occurred along the spherical interface, as revealed by advanced in-situ X-ray microcomputed tomography. The experimental results agreed well with the theoretical predictions, indicating that the high-strength interface contributes to the overall strength and toughness of the sphere-containing structure.展开更多
This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This researc...This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.展开更多
Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE...Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE) simulation. The quantitative model of atomic diffusion, which is related to the ultrasonic bonding parameters, time and distance, is established to calculate the atomic diffusion of the Al-Au interface. The maximum relative error between the calculated and experimental fraction of Al atom is 7.35%, indicating high prediction accuracy of this model. During the process of ultrasonic bonding, Au8Al3 is the main intermetallic compound (IMC) at the Al-Au interface. With larger bonding forces, higher ultrasonic powers and longer bonding time, it is more difficult to remove the oxide particles from the Al-Au interface, which hinders the atomic diffusion. Therefore, the complicated stress state and the existence of oxide particles both promotes the formation of holes. The shear strength of Al-Au ultrasonic bonding increases with increasing bonding force, ultrasonic power and bonding time. However, combined with the presence of holes at especial parameters, the optimal ultrasonic bonding parameter is confirmed to be a bonding force of 23 gf, ultrasonic power of 75 mW and bonding time of 21 ms.展开更多
Developing in situ spectroelectrochemistry methods,which can provide detailed information about species trans-formation during electrochemical reactions,is very important for studying electrode reaction mechanisms and...Developing in situ spectroelectrochemistry methods,which can provide detailed information about species trans-formation during electrochemical reactions,is very important for studying electrode reaction mechanisms and improving battery performance.Studying real-time changes in the surface of electrode materials during normal operation can be an effective way to assess and optimize the practical performance of electrode materials,thus,in situ and in operando characterization techniques are particularly important.However,batteries are hard to be studied by in situ characterization measurements due to their hermetically sealed shells,and there is still much room for battery characterizations.In this work,a specially designed battery based on the structure of coin cells,whose upper cover was transparent,was constructed.With such a device,acquisition of diffuse reflectance spectra of electrode materials during charging and discharging was realized.This not only provided a simple measurement accessory for diffuse reflectance spectroscopy(DRS),but also complemented in situ characterization techniques for batteries.Taking commonly used cathode materials in lithium-ion batteries(LIBs),including LiFePO_(4)(LFP),NCM811 and LiCoO_(2)(LCO)as examples,we managed tofind out the response relationships of different electrode materials to visible light of different wavelengths under ordinary reflectance illumination conditions.Heterogeneity of different cathode ma-terials on interaction relationships with the lights of different wavelengths was also revealed.This work demonstrated the capability of guiding wavelength selection for different materials and assessing electrochemical performances of in situ diffuse reflectance spectroelectrochemistry.By combining electrochemistry with diffuse reflectance spectroscopy,this work made an effective complementary for spectroelectrochemistry.展开更多
The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribu...The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribution of its electric field.Regarding the issue of accurately predicting the depth of diffusion in InGaAs/InP SPAD,simulation analysis and device development were carried out,focusing on the dual diffusion behavior of zinc atoms.A formula of X_(j)=k√t-t_(0)+c to quantitatively predict the diffusion depth is obtained by fitting the simulated twice-diffusion depths based on a two-dimensional(2D)model.The 2D impurity morphologies and the one-dimensional impurity profiles for the dual-diffused region are characterized by using scanning electron micros-copy and secondary ion mass spectrometry as a function of the diffusion depth,respectively.InGaAs/InP SPAD devices with different dual-diffusion conditions are also fabricated,which show breakdown behaviors well consis-tent with the simulated results under the same junction geometries.The dark count rate(DCR)of the device de-creased as the multiplication width increased,as indicated by the results.DCRs of 2×10^(6),1×10^(5),4×10^(4),and 2×10^(4) were achieved at temperatures of 300 K,273 K,263 K,and 253 K,respectively,with a bias voltage of 3 V,when the multiplication width was 1.5µm.These results demonstrate an effective prediction route for accu-rately controlling the dual-diffused zinc junction geometry in InP-based planar device processing.展开更多
Ammonium dinitramide(ADN)is a new type of green energetic oxidizer with excellent energy density and low pollution combustion characteristics.However,the strong hygroscopicity has a significant impact on its practical...Ammonium dinitramide(ADN)is a new type of green energetic oxidizer with excellent energy density and low pollution combustion characteristics.However,the strong hygroscopicity has a significant impact on its practical application.To assist in the research on moisture-proof modification of ADN materials,an innovative hygroscopic modeling approach was proposed to evaluate the hygroscopicity of ADN at various temperatures and humidities.By investigating the diffusion coefficient of water molecules in molecular dynamics processes,a visual insight into the hygroscopic process of ADN was gained.Furthermore,analyzing the non-covalent interactions between ADN and water molecules,the hygroscopicity of ADN could be evaluated qualitatively and quantitatively.The energy analysis revealed that electrostatic forces play a dominant role in the process of water adsorption by ADN,whereas van der Waals forces impede it.As a whole,the simulation results show that ADN presents the following hygroscopic law:At temperatures ranging from 273 K to 373 K and relative humidity(RH)from 10%to 100%,the hygroscopicity of ADN generally shows an increasing trend with the rise in temperature and humidity based on the results of three simulations.According to the non-hygroscopic point(298 K,52%RH)of ADN obtained by experiment in the literature,a non-hygroscopic range of temperature and humidity for ADN can be depicted when the simulation results in relative hygroscopicity is less than or equal to 17%.This study can provide effective strategies for screening anti-hygroscopic modified materials of ADN.展开更多
文摘The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV(particle image velocimetry)and pressure probe traverses.PIV measurements have already been performed at middle height inside one diffuser channel passage for a given speed of rotation and various mass flow rates.These results have been already presented in several previous communications.New experiments have been performed using a three-hole pressure probe traverses from hub to shroud diffuser width at different radial locations between the two diffuser geometrical throats.Numerical simulations are also realized with the commercial codes Star CCM+7.02.011 and CFX.Frozen rotor and fully unsteady calculations of the whole pump have been performed.Comparisons between numerical results,previous experimental PIV results and new probe traverses one's are presented and discussed for one mass flow rate.In this respect,a first attempt to take into account fluid leakages between the rotating and fixed part of the pump has been checked since it may affects the real flow structure inside the diffuser.
基金Projects(59375211,10771178,10676031) supported by the National Natural Science Foundation of ChinaProject(07A068) supported by the Key Project of Hunan Education CommissionProject(2005CB321702) supported by the National Key Basic Research Program of China
文摘The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence model and pressure Poisson equation were discretized by upwind difference scheme.A new full implicit difference scheme of 5-point was constructed by using finite volume method and finite difference method.A large sparse matrix with five diagonals was formed and was stored by three arrays of one dimension in a compressed mode.General iterative methods do not work wel1 with large sparse matrix.With algebraic multigrid method(AMG),linear algebraic system of equations was solved and the precision was set at 10-6.The computation results were compared with the experimental results.The results show that the computation results have a good agreement with the experiment data.The precision of computational results and numerical simulation efficiency are greatly improved.
基金Project(52174303)supported by the National Natural Science Foundation of ChinaProject(2023JH2/101700302)supported by the Joint Program of Science and Technology Plans in Liaoning Province,China。
文摘Based on microstructure analysis,diffusion theory,and hot deformation experiments,the solidification microstructure and element segregation of the Alloy 625 Plus ingot,the diffusion kinetics of Ti,Nb,and Mo during homogenization and the hot deformation behavior of the homogenized ingot were investigated in this study.The results indicate that:(1)the solidified ingot exhibits a typical dendritic microstructure,and significant element segregation occurs,leading to the presence of Ti,Nb,and Mo-rich precipitates in the interdendritic region;(2)Following homogenization,the degree of element segregation in the ingot is significantly reduced.The diffusion coefficients(D)of Ti,Nb,and Mo under various homogenization conditions were calculated.Subsequently,the diffusion constants(D_(0))and activation energies(Q)of Ti,Nb,and Mo were obtained to be 0.01432,0.00397 and 0.00195 cm^(2)/s and 244.851,230.312,and 222.125 kJ/mol,respectively.Finally,the diffusion kinetics formulas for Ti,Nb,and Mo in Alloy 625 Plus were established.After homogenization at 1220℃for 8 h,the alloy exhibits low deformation resistance,a high degree of recrystallization,and optimal deformation coordination ability.Therefore,this represents a rational single-stage homogenization process.
基金Project(2022YFC3801000)supported by the National Key Research and Development Program of ChinaProject(232300421064)supported by the Natural Science Foundation of Henan Province,China+1 种基金Project(241111322700)supported by the Key Research and Development Projects in Henan Province,ChinaProject(52008379)supported by the National Natural Science Foundation of China。
文摘Recently,foamed polymers have been widely used in the repair of underground engineering disasters by grouting(trenchless technology)due to controllable gelation time and self-expansion.However,the grouting process becomes more complicated due to the complex geological conditions and the self-expansion of slurry.Therefore,this paper adopts a self-made visual experimental device with peripheral pressure and water plugging rate(WPR)monitoring functions to study the influence of main influencing parameters(particle size distribution,grouting amount and dynamic water pump pressure(DWPP))on the spatiotemporal distribution of slurry WPR and diffusion dynamic response(peripheral pressure).The results show that:When grouting amount is 563 g and DWPP is 0.013 MPa,the expansion force of the slurry in the diffusion process is dominant and can significantly change the local sand and gravel skeleton structure.When grouting amount is 563 g,DWPP is 0.013 MPa,and particle size distribution type isⅢ,the flow time of the polymer is shortened,the pores of the gravel are rapidly blocked.Then,the peripheral pressure decreases rapidly with the increase of the distance,and the time to reach the inflection point WPR is shortened.The instantaneous blockage of the pores leads to the delayed transmission of flow field blockage information.
基金supported by the National Natural Science Foundation of China(Grant No.12372351).
文摘In this study, to meet the development and application requirements for high-strength and hightoughness energetic structural materials, a representative volume element of a TA15 matrix embedded with a TaZrNb sphere was designed and fabricated via diffusion bonding. The mechanisms of the microstructural evolution of the TaZrNb/TA15 interface were investigated via SEM, EBSD, EDS, and XRD.Interface mechanical property tests and in-situ tensile tests were conducted on the sphere-containing structure, and an equivalent tensile-strength model was established for the structure. The results revealed that the TA15 titanium alloy and joint had high density and no pores or cracks. The thickness of the planar joint was approximately 50-60 μm. The average tensile and shear strengths were 767 MPa and 608 MPa, respectively. The thickness of the spherical joint was approximately 60 μm. The Zr and Nb elements in the joint diffused uniformly and formed strong bonds with Ti without forming intermetallic compounds. The interface exhibited submicron grain refinement and a concave-convex interlocking structure. The tensile fracture surface primarily exhibited intergranular fracture combined with some transgranular fracture, which constituted a quasi-brittle fracture mode. The shear fracture surface exhibited brittle fracture with regular arrangements of furrows. Internal fracture occurred along the spherical interface, as revealed by advanced in-situ X-ray microcomputed tomography. The experimental results agreed well with the theoretical predictions, indicating that the high-strength interface contributes to the overall strength and toughness of the sphere-containing structure.
基金Project(52276068)supported by the National Natural Science Foundation of China。
文摘This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.
基金Project(2022YFB3707201) supported by the National Key R&D Program of ChinaProject(U2341254) supported by the Ye Qisun Science Foundation of National Natural Science Foundation of China+1 种基金Projects(0604022GH0202143,0604022SH0201143) supported by the NPU Aoxiang Distinguished Young Scholars,ChinaProject supported by the Funding of Young Top-notch Talent of the National Ten Thousand Talent Program,China。
文摘Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE) simulation. The quantitative model of atomic diffusion, which is related to the ultrasonic bonding parameters, time and distance, is established to calculate the atomic diffusion of the Al-Au interface. The maximum relative error between the calculated and experimental fraction of Al atom is 7.35%, indicating high prediction accuracy of this model. During the process of ultrasonic bonding, Au8Al3 is the main intermetallic compound (IMC) at the Al-Au interface. With larger bonding forces, higher ultrasonic powers and longer bonding time, it is more difficult to remove the oxide particles from the Al-Au interface, which hinders the atomic diffusion. Therefore, the complicated stress state and the existence of oxide particles both promotes the formation of holes. The shear strength of Al-Au ultrasonic bonding increases with increasing bonding force, ultrasonic power and bonding time. However, combined with the presence of holes at especial parameters, the optimal ultrasonic bonding parameter is confirmed to be a bonding force of 23 gf, ultrasonic power of 75 mW and bonding time of 21 ms.
基金the financial support from the National Natural Science Foundation of China (No. 21925403)the Excellent Research Program of Nanjing University (Grant No. ZYJH004)。
文摘Developing in situ spectroelectrochemistry methods,which can provide detailed information about species trans-formation during electrochemical reactions,is very important for studying electrode reaction mechanisms and improving battery performance.Studying real-time changes in the surface of electrode materials during normal operation can be an effective way to assess and optimize the practical performance of electrode materials,thus,in situ and in operando characterization techniques are particularly important.However,batteries are hard to be studied by in situ characterization measurements due to their hermetically sealed shells,and there is still much room for battery characterizations.In this work,a specially designed battery based on the structure of coin cells,whose upper cover was transparent,was constructed.With such a device,acquisition of diffuse reflectance spectra of electrode materials during charging and discharging was realized.This not only provided a simple measurement accessory for diffuse reflectance spectroscopy(DRS),but also complemented in situ characterization techniques for batteries.Taking commonly used cathode materials in lithium-ion batteries(LIBs),including LiFePO_(4)(LFP),NCM811 and LiCoO_(2)(LCO)as examples,we managed tofind out the response relationships of different electrode materials to visible light of different wavelengths under ordinary reflectance illumination conditions.Heterogeneity of different cathode ma-terials on interaction relationships with the lights of different wavelengths was also revealed.This work demonstrated the capability of guiding wavelength selection for different materials and assessing electrochemical performances of in situ diffuse reflectance spectroelectrochemistry.By combining electrochemistry with diffuse reflectance spectroscopy,this work made an effective complementary for spectroelectrochemistry.
基金Supported by Shanghai Natural Science Foundation(22ZR1472600).
文摘The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribution of its electric field.Regarding the issue of accurately predicting the depth of diffusion in InGaAs/InP SPAD,simulation analysis and device development were carried out,focusing on the dual diffusion behavior of zinc atoms.A formula of X_(j)=k√t-t_(0)+c to quantitatively predict the diffusion depth is obtained by fitting the simulated twice-diffusion depths based on a two-dimensional(2D)model.The 2D impurity morphologies and the one-dimensional impurity profiles for the dual-diffused region are characterized by using scanning electron micros-copy and secondary ion mass spectrometry as a function of the diffusion depth,respectively.InGaAs/InP SPAD devices with different dual-diffusion conditions are also fabricated,which show breakdown behaviors well consis-tent with the simulated results under the same junction geometries.The dark count rate(DCR)of the device de-creased as the multiplication width increased,as indicated by the results.DCRs of 2×10^(6),1×10^(5),4×10^(4),and 2×10^(4) were achieved at temperatures of 300 K,273 K,263 K,and 253 K,respectively,with a bias voltage of 3 V,when the multiplication width was 1.5µm.These results demonstrate an effective prediction route for accu-rately controlling the dual-diffused zinc junction geometry in InP-based planar device processing.
基金supported by the National Natural Science Foundation of China(Grant Nos.22375098,21805139 and 12102194)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2141202)Young Elite Scientists Sponsorship Program by CAST(Grant No.2021QNRC001).
文摘Ammonium dinitramide(ADN)is a new type of green energetic oxidizer with excellent energy density and low pollution combustion characteristics.However,the strong hygroscopicity has a significant impact on its practical application.To assist in the research on moisture-proof modification of ADN materials,an innovative hygroscopic modeling approach was proposed to evaluate the hygroscopicity of ADN at various temperatures and humidities.By investigating the diffusion coefficient of water molecules in molecular dynamics processes,a visual insight into the hygroscopic process of ADN was gained.Furthermore,analyzing the non-covalent interactions between ADN and water molecules,the hygroscopicity of ADN could be evaluated qualitatively and quantitatively.The energy analysis revealed that electrostatic forces play a dominant role in the process of water adsorption by ADN,whereas van der Waals forces impede it.As a whole,the simulation results show that ADN presents the following hygroscopic law:At temperatures ranging from 273 K to 373 K and relative humidity(RH)from 10%to 100%,the hygroscopicity of ADN generally shows an increasing trend with the rise in temperature and humidity based on the results of three simulations.According to the non-hygroscopic point(298 K,52%RH)of ADN obtained by experiment in the literature,a non-hygroscopic range of temperature and humidity for ADN can be depicted when the simulation results in relative hygroscopicity is less than or equal to 17%.This study can provide effective strategies for screening anti-hygroscopic modified materials of ADN.