Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-t...Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-tion microlens arrays preparation in the conventional engraving method.It has a serious impact on its performance and subsequent applications.In response to the problem of errors of Si diffraction microlens arrays in the conven-tional method,a novel self-alignment method for high precision Si diffraction microlens arrays preparation is pro-posed.The accuracy of the Si diffractive microlens arrays preparation is determined by the accuracy of the first li-thography mask in the novel self-alignment method.In the subsequent etching,the etched area will be protected by the mask layer and the sacrifice layer or the protective layer.The unprotection area is carved to effectively block the non-etching areas,accurately etch the etching area required,and solve the problem of errors.The high precision Si diffraction microlens arrays are obtained by the novel self-alignment method and the diffraction effi-ciency could reach 92.6%.After integrating with IRFPAs,the average blackbody responsity increased by 8.3%,and the average blackbody detectivity increased by 10.3%.It indicates that the Si diffraction microlens arrays can improve the filling factor and reduce crosstalk of IRFPAs through convergence,thereby improving the perfor-mance of the IRFPAs.The results are of great reference significance for improving their performance through opti-mizing the preparation level of micro nano devices.展开更多
This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
The ingots of Pr0.15TbxDy0.85-xFe2 (x=0.10-0.85) series compounds with a single phase were prepared -by a arc melting method. The X-ray diffraction patterns were measured using a Philips X’pert MPD X-ray diffractom...The ingots of Pr0.15TbxDy0.85-xFe2 (x=0.10-0.85) series compounds with a single phase were prepared -by a arc melting method. The X-ray diffraction patterns were measured using a Philips X’pert MPD X-ray diffractometer with a non-ambient sample stage at different temperatures, the magnetostrictive distortion in (Pr0.15TbxDy0.85-xFe2) polycrystals was investigated by X-ray diffraction patterns and the magnetostriction coefficient λ111 was calculated. The results show -when the temperature is raised above the spin reorientation temperature region, a splitting appears in the reflection (440); the λ111 increase with the increasing of Tb content for (Pr0.15TbxDy0.85-xFe2) polycrystals and the full width at half maximum (FWHM) of the reflection (440) increases gradually with the increasing of Tb content. Moreover, as the FWHM of the reflection (440) decreases gradually with the increasing of temperature, the λ111 decreases slightly with the increasing of temperature at the temperature region of 223-373K for Pr0.15Tb0.3Dy0.55Fe2 alloy.展开更多
Rotary friction welding is a highly effective solid-state technique for joining dissimilar materials,which offers the potential for significant weight reduction without compromising strength.Traditionally,during rotar...Rotary friction welding is a highly effective solid-state technique for joining dissimilar materials,which offers the potential for significant weight reduction without compromising strength.Traditionally,during rotary friction welding,the severely deformed material,or flash,is expelled from the interface and machined away to achieve the desired joint geometry.However,this work introduces a novel approach:trapping the flash within the joint to improve joint properties.The study investigates two different interface geometry combinationsdflat-flat and flat-taper interfaces.Previous research shows that Ni interlayer between steel and titanium can enhance the joint strength.This study builds on the existing knowledge(effect of Ni interlayer)by examining the influence of interface geometry to further improve the dissimilar joint performance.The experimental results,including tensile testing and microstructural characterization,highlight the superior performance of the flat-taper interface.The modified geometry minimizes flash loss,providing a cavity that retains both the flash and the Ni interlayer within the joint.This retention promotes dynamic recrystallization,resulting in refined grain structures near the interface.Moreover,the trapped Ni interlayer effectively prevents the formation of brittle Fe-Ti intermetallic compounds at the dissimilar material interface.The findings reveal that the flat-taper interface improved joint strength by an impressive 105%compared to the flat-flat interface.This innovative geometry modification demonstrates the potential to enhance mechanical properties of dissimilar joints through better flash and interlayer management.展开更多
This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-...This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-and molybdenum-free high-nitrogen austenitic stainless steel(HNASS).FSW at 400 rpm and 30 mm/min resulted in finer grains(4.18μm)and higher coincident site lattice(CSL)boundaries(32.3%)at the top of the stir zone(SZ)due to dynamic recrystallization(DRX).PWHT at 900℃for 1 h led to grain coarsening(12.91μm the bottom SZ)but enhanced CSL boundaries from 24.6%to 30.2%,improving grain boundary stability.PWHT reduced the kernel average misorientation(KAM)by 14.9%in the SZ-top layer and 20.4%in the SZ-bottom layer,accompanied by a 25%decrease in hardness in the SZ-top layer and 26.7%in the SZ-bottom layer,indicating strain recovery and reduced dislocation density.Potentiodynamic polarization tests(PDP)showed a 18%increase in pitting potential and a 76%reduction in corrosion rate after PWHT.The improvement in corrosion resistance is attributed to the increase inΣ3 twin boundaries,which enhance grain boundary stability and reduce susceptibility to localized corrosion.These findings highlight the role of PWHT in refining the microstructure and strengthening corrosion resistance,making HNASS a promising material for demanding applications.展开更多
Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in diff...Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in different regions.The above experiments were numerically simulated,and the simulated shock wave overpressure waveforms were compared with that tested and given by CONWEP program.The results show that the numerically simulated waveform is slightly different from the test waveform,but similar to CONWEP waveform.Through dimensional analysis and numerical simulation under different working conditions,the equation for the attenuation rate of the diffraction overpressure behind the blast wall was obtained.According to the corresponding standards,the degree of casualties and the damage degree of the brick concrete building at a certain distance behind the wall can be determined when parameters are set.The above results can provide a reference for the design and construction of the reinforced concrete blast wall.展开更多
The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE...The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE) technique has become the third pillar of detonation research, along with theory and experiment, due to the detonation phenomenon is difficult to explain by the theoretical analysis, and the cost required to accredit the reliability of detonation products is very high, even some physical experiments of detonation are impossible. The numerical simulation technique can solve these complex problems in the real situation repeatedly and reduce the design cost and time stunningly. But the reliability of numerical simulation software and the serviceability of the computational result seriously hinders the extension, application and the self-restoration of the simulation software, restricts its independently innovational ability. This article deals with the physical modeling, numerical simulation, and software development of detonation in a unified way. Verification and validation and uncertainty quantification (V&V&UQ) is an important approach in ensuring the credibility of the modeling and simulation of detonation. V&V of detonation is based on our independently developed detonation multiphysics software-LAD2D. We propose the verification method based on mathematical theory and program function as well as availability of its program execution. Validation is executed by comparing with the experiment data. At last, we propose the future prospect of numerical simulation software and the CAE technique, and we also pay attention to the research direction of V&V&UQ.展开更多
The features of the techniques of fast reducing roasting (FRR) and conventional magnetic roasting, as well as tremendous demands of iron ores in iron and steel industry of China, were briefly described. The test equ...The features of the techniques of fast reducing roasting (FRR) and conventional magnetic roasting, as well as tremendous demands of iron ores in iron and steel industry of China, were briefly described. The test equipment suitable for FRR of fine-grained materials was introduced. Weakly magnetic materials with grain size of 〈0.30 mm were converted into strongly magnetic materials by FRR for several to dozens of seconds. In a weakly reducing atmosphere and at 740-800 ~C, refractory powder iron material (〈0.30 mm) which is rich in specularite, limonite and Mg-Mn siderite was subjected to FRR for a few seconds to 60 s. Concentrate with iron grade of 55.67%-55.21%, high contents of Mg and Mn in the ore is obtained and the yield of magnetic separation reaches 81.66%-86.57%. The results of X-ray diffraction (XRD) analysis and magnetism detection of the material before and after FRR indicate that weakly magnetic material is mainly converted into strongly magnetic material Fe304 with specific saturation magnetic moment. The efficiency of FRR is consistent with TFe recovery of magnetic separation; meantime, the specific sa^u'ation magnetic moment increases from 33 to 42 times after FRR. Calculations show that speeds of flash magnetic roasting are obtained from several dozen to two or three hundred times, compared with rotary kiln or shaft furnace. This indicates that it is practicable to use the fast reducing roasting technique to improve the comprehensive utilization of iron ore resources.展开更多
Textile-reinforced concrete(TRC)is suitable to repair and reinforce concrete structures in harsh environments.The performance of the interface between TRC and existing concrete is an important factor in determining th...Textile-reinforced concrete(TRC)is suitable to repair and reinforce concrete structures in harsh environments.The performance of the interface between TRC and existing concrete is an important factor in determining the strengthening effect of TRC.In this paper,a double-sided shear test was performed to investigate the effects of the chloride dry-wet cycles on the average shear strength and slip at the interface between the TRC and existing concrete,also considering the existing concrete strength,bond length,textile layer and short-cut fiber arrangements.In addition,X-ray diffraction(XRD)technology was used to analyze the microscopic matter at the interface in the corrosive environment.The experimental results indicate that the interface performance between TRC and existing concrete would decrease with continued chloride dry-wet cycles.Compared with the specimen with a single layer of textile reinforcement,the specimens with two layers of textile with added PVA or AR-glass short-cut fibers could further improve the properties of the interface between the TRC layer and existing concrete.For the TRC with a single layer of textile,the average shear strength tended to decrease with increasing bond length.In addition,the strength grade of the existing concrete had a minor effect on the interface properties.展开更多
Thermogravimetric analysis and electrical resistivity were used to determine the hydration process of cement paste with rice husk ash(RHA)(0−15%)and water-cement ratio of 0.4 in this work.X-ray diffraction(XRD)method ...Thermogravimetric analysis and electrical resistivity were used to determine the hydration process of cement paste with rice husk ash(RHA)(0−15%)and water-cement ratio of 0.4 in this work.X-ray diffraction(XRD)method and scanning electron microscopy(SEM)were used to survey crystal composition and microstructures of specimens cured for 3 h,1 d,7 d and 28 d.Finally,electrical parameters(electrical resistance and AC impedance spectroscopy)of steel bars reinforced cement paste were investigated to study the effect of RHA on the corrosion resistance.Results showed that RHA could affect the cement hydration by hydration promotion and pozzolanic effect.The evaluation function for electrical resistivity and curing ages fitted well with linear increasing function.The addition of RHA higher than 5%demonstrated a decreasing role in the electrical resistivity of cement paste at earlier curing ages(3−7 d).Meanwhile,when at later curing ages(7−28 d)the result was the opposite.Moreover,RHA demonstrated positive effects on corrosion resistance of steel bars in cement paste.展开更多
Non Pt based metals and alloys as electrode materials for methyl alcohol fuel cells have been investigated w ith an aim of finding high electrocatalytic surface property for the faster electrode reactions.Electrodes w...Non Pt based metals and alloys as electrode materials for methyl alcohol fuel cells have been investigated w ith an aim of finding high electrocatalytic surface property for the faster electrode reactions.Electrodes w ere fabricated by electrodeposition on pure Al foil,from an electrolyte of Ni,Co,Fe salts.The optimum condition of electrodeposition w ere found out by a series of experiments,varying the chemistry of the electrolyte,pH valve,temperature,current and cell potential.Polarization study of the coated Ni-Co or Ni-CoFe alloy on pure Al w as found to exhibit high exchange current density,indicating an improved electro catalytic surface w ith faster charge-discharge reactions at anode and cathode and low overvoltage.Electrochemical impedance studies on coated and uncoated surface clearly show ed that the polarization resistance and impedance w ere decreased by Ni-Co or Ni-Co-Fe coating.X-ray diffraction(XRD),energy dispersive X-ray spectroscopy(EDX)and atomic absorption spectroscopy(AAS)studies confirmed the presence of alloying elements and constituents of the alloy.The morphology of the deposits from scanning electron microscope(SEM)images indicated that the electrode surface w as a three dimensional space w hich increased the effective surface area for the electrode reactions to take place.展开更多
In order to simulate and study the mechanism of cement stabilized soils polluted by different contents of magnesium sulfate(MS), a series of tests were conducted on the cemented soil samples, including unconfined comp...In order to simulate and study the mechanism of cement stabilized soils polluted by different contents of magnesium sulfate(MS), a series of tests were conducted on the cemented soil samples, including unconfined compression strength(UCS) tests of blocks, X-ray diffraction(XRD) phase analysis of powder samples, microstructure by scanning electronic microscopy(SEM),element composition by energy dispersive spectrometry(EDS), and pore distribution analysis by Image Processed Plus 6.0(IPP 6.0)software. The UCS test results show that UCS of cemented soils reaches the peak value when the MS content is 4.5 g/kg. While, the UCS for Sample MS4 having the MS content of 18.0 g/kg is the lowest among all tested samples. Based on the EDS analysis results,Sample MS4 has the greater contents for the three elements, oxygen(O), magnesium(Mg) and sulfur(S), than Sample MS1. From the XRD phase analysis, C-A-S-H(3Ca O·Al2O3·3Ca SO4·32H2O and 3Ca O·Al2O3·Ca SO4·18H2O), M-A-H(Mg O·Al2O3·H2O), M-S-H(Mg O·Si O2·H2O), Mg(OH)2 and Ca SO4 phase diffraction peaks are obviously intense due to the chemical action associated with the MS. The pore distribution analysis shows that the hydrated products change the distribution of cemented soil pores and the pores with average diameter(AD) of 2-50 μm play a key role in terms of the whole structure of cemented soil. The microscopic structure of the cemented soil with MS exhibits the intertwined and embedded characteristics between the cement and granular soils from the SEM images of cemented soils. The microstructure analysis shows that the magnesium sulfate acts as the additive, which is beneficial to the soil strength when the MS content is low(i.e., Sample MS2). However, higher MS amount involving a chemical action makes samples crystallize and expand, which is adverse to the UCS of cemented soils(i.e., Sample MS4).展开更多
Transformation-induced plasticity(TRIP)steel possesses high strength and formability,enabling the use of a thinner gauge material and allowing for the fabrication of complex shapes.In this research,we measured the eff...Transformation-induced plasticity(TRIP)steel possesses high strength and formability,enabling the use of a thinner gauge material and allowing for the fabrication of complex shapes.In this research,we measured the effect of bending temperatures on the microstructure and air-bending springback angle of TRIP steel at temperatures from 25 to 600C.Real-time in situ X-ray diffraction and scanning electron microscopy were used for pre-and postbending analysis.As the prebending temperature increased from 25C to 600C,the retained austenite(RA)volume fraction decreased,and the RA transformed to bainite at temperatures above 400C.The springback angle was positively correlated with the prebending RA volume fraction,with the smallest springback angle achieved at 400C.Additionally,the springback angle was positively correlated with the bending angle,because the RA transformation ratio contributed to increased strain hardening.Further microstructure analysis revealed that the RA became elongated in the tension direction as the bending temperatures increased.展开更多
The present study focuses on the mitigation of shock wave using novel geometric passages in the flow field.The strategy is to produce multiple shock reflections and diffractions in the passage with minimum flow obstru...The present study focuses on the mitigation of shock wave using novel geometric passages in the flow field.The strategy is to produce multiple shock reflections and diffractions in the passage with minimum flow obstruction,which in turn is expected to reduce the shock wave strength at the target location.In the present study the interaction of a plane shock front(generated from a shock tube)with various geometric designs such as,1)zig-zag geometric passage,2)staggered cylindrical obstructions and 3)zigzag passage with cylindrical obstructions have been investigated using computational technique.It is seen from the numerical simulation that,among the various designs,the maximum shock attenuation is produced by the zig-zag passage with cylindrical obstructions which is then followed by zig-zag passage and staggered cylindrical obstructions.A comprehensive investigation on the shock wave reflection and diffraction phenomena happening in the proposed complex passages have also been carried out.In the new zig-zag design,the initial shock wave undergoes shock wave reflection and diffraction process which swaps alternatively as the shock front moves from one turn to the other turn.This cyclic shock reflection and diffraction process helps in diffusing the shock wave energy with practically no obstruction to the flow field.It is found that by combining the shock attenuation ability of zig-zag passage(using shock reflection and diffraction)with the shock attenuation ability of cylindrical blocks(by flow obstruction),a drastic attenuation in shock strength can be achieved with moderate level of flow blocking.展开更多
A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain techn...A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain technique for describing the transient electromagnetic field reflected from wall, floor, ceiling, and objects. The polarization of the received waveform is determined by taking into account the radiation pattern of the transmitting and receiving antennas, as well as the polarization changes owing to every reflection. The model provides more intrinsical interpretations for UWB pulse propagation in realistic indoor environment.展开更多
The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geo...The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geometric theory of the diffraction(GTD)model are estimated at low signal-to-noise ratio(SNR).To solve this problem,a modified 3D-ESPRIT algorithm is proposed.The modified algorithm improves the parameter estimation accuracy by proposing a novel spatial smoothing technique.Firstly,we make cross-correlation of the auto-correlation matrices;then by averaging the cross-correlation matrices of the forward and backward spatial smoothing,we can obtain a novel equivalent spatial smoothing matrix.The formula of the modified algorithm is derived and the performance of this improved method is also analyzed.Then we compare root-meansquare-errors(RMSEs)of different parameters and the locating accuracy obtained by different algorithms.Furthermore,radar cross section(RCS)of radar targets is extrapolated.Simulation results verify the effectiveness and superiority of the modified 3DESPRIT algorithm.展开更多
The precipitation of MgZn2 phase in aging process of Al-Zn-Mg-Cu alloy forging was characterized qualitatively after transmission electron microscope(TEM)observation,X-ray diffraction phase analysis and the exact meas...The precipitation of MgZn2 phase in aging process of Al-Zn-Mg-Cu alloy forging was characterized qualitatively after transmission electron microscope(TEM)observation,X-ray diffraction phase analysis and the exact measure of lattice parameter.And,the precipitation of the second-phase in aging process was simulated after test the resistivity of the alloy in a continuous heating process and delayed time processing.The results show that when heating in the same rate,the alloy resistivity increases with temperature first,a mutation point appears at 110℃,and the resistivity reaches its peak at 120℃.Then,the resistivity decreases and achieves a minimum at about 170℃.Afterwards,it increases again.The change of resistivity results from a combined effect of the temperature and phase transformation.The volume precipitation of η' phase dominates at about 120℃,and the resistivity of forgings decreases accordingly.When the specimen cools in a furnace at 240℃,the phase transformation finishes basically and the alloy content of Al-matix keeps stable,thus,the alloy resistivity depends on the temperature only.It decreases with temperature and time since the end of precipitation.The higher the temperature is,the bigger it will be.With a big descending rate of the resistivity curve,the time to reach the stable value becomes shorter.展开更多
The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu_2(CeCu_2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of ...The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu_2(CeCu_2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of HoCu_2 were a mixture of Cu, unknown hydride Ⅰ, and unknown hydride Ⅱ. Based on the PCT(pressure-concentration-temperature) curves under different reaction temperatures, the relationships among reaction temperature, equilibrium pressure, and maximum hydrogen absorption capacity were analyzed and discussed. The enthalpy change ΔH and entropy change ΔS as a result of the whole hydrogenation process were also calculated from the PCT curves. The magnetization and volumetric specific heat capacity of the hydride were also measured by SQUID magnetometer and PPMS, respectively.展开更多
基金Supported by the National Natural Science Foundation of China(NSFC 62105100)the National Key research and development program in the 14th five year plan(2021YFA1200700)。
文摘Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-tion microlens arrays preparation in the conventional engraving method.It has a serious impact on its performance and subsequent applications.In response to the problem of errors of Si diffraction microlens arrays in the conven-tional method,a novel self-alignment method for high precision Si diffraction microlens arrays preparation is pro-posed.The accuracy of the Si diffractive microlens arrays preparation is determined by the accuracy of the first li-thography mask in the novel self-alignment method.In the subsequent etching,the etched area will be protected by the mask layer and the sacrifice layer or the protective layer.The unprotection area is carved to effectively block the non-etching areas,accurately etch the etching area required,and solve the problem of errors.The high precision Si diffraction microlens arrays are obtained by the novel self-alignment method and the diffraction effi-ciency could reach 92.6%.After integrating with IRFPAs,the average blackbody responsity increased by 8.3%,and the average blackbody detectivity increased by 10.3%.It indicates that the Si diffraction microlens arrays can improve the filling factor and reduce crosstalk of IRFPAs through convergence,thereby improving the perfor-mance of the IRFPAs.The results are of great reference significance for improving their performance through opti-mizing the preparation level of micro nano devices.
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
基金Project(50271023) supported by the National Natural Science Foundation of China
文摘The ingots of Pr0.15TbxDy0.85-xFe2 (x=0.10-0.85) series compounds with a single phase were prepared -by a arc melting method. The X-ray diffraction patterns were measured using a Philips X’pert MPD X-ray diffractometer with a non-ambient sample stage at different temperatures, the magnetostrictive distortion in (Pr0.15TbxDy0.85-xFe2) polycrystals was investigated by X-ray diffraction patterns and the magnetostriction coefficient λ111 was calculated. The results show -when the temperature is raised above the spin reorientation temperature region, a splitting appears in the reflection (440); the λ111 increase with the increasing of Tb content for (Pr0.15TbxDy0.85-xFe2) polycrystals and the full width at half maximum (FWHM) of the reflection (440) increases gradually with the increasing of Tb content. Moreover, as the FWHM of the reflection (440) decreases gradually with the increasing of temperature, the λ111 decreases slightly with the increasing of temperature at the temperature region of 223-373K for Pr0.15Tb0.3Dy0.55Fe2 alloy.
文摘Rotary friction welding is a highly effective solid-state technique for joining dissimilar materials,which offers the potential for significant weight reduction without compromising strength.Traditionally,during rotary friction welding,the severely deformed material,or flash,is expelled from the interface and machined away to achieve the desired joint geometry.However,this work introduces a novel approach:trapping the flash within the joint to improve joint properties.The study investigates two different interface geometry combinationsdflat-flat and flat-taper interfaces.Previous research shows that Ni interlayer between steel and titanium can enhance the joint strength.This study builds on the existing knowledge(effect of Ni interlayer)by examining the influence of interface geometry to further improve the dissimilar joint performance.The experimental results,including tensile testing and microstructural characterization,highlight the superior performance of the flat-taper interface.The modified geometry minimizes flash loss,providing a cavity that retains both the flash and the Ni interlayer within the joint.This retention promotes dynamic recrystallization,resulting in refined grain structures near the interface.Moreover,the trapped Ni interlayer effectively prevents the formation of brittle Fe-Ti intermetallic compounds at the dissimilar material interface.The findings reveal that the flat-taper interface improved joint strength by an impressive 105%compared to the flat-flat interface.This innovative geometry modification demonstrates the potential to enhance mechanical properties of dissimilar joints through better flash and interlayer management.
文摘This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-and molybdenum-free high-nitrogen austenitic stainless steel(HNASS).FSW at 400 rpm and 30 mm/min resulted in finer grains(4.18μm)and higher coincident site lattice(CSL)boundaries(32.3%)at the top of the stir zone(SZ)due to dynamic recrystallization(DRX).PWHT at 900℃for 1 h led to grain coarsening(12.91μm the bottom SZ)but enhanced CSL boundaries from 24.6%to 30.2%,improving grain boundary stability.PWHT reduced the kernel average misorientation(KAM)by 14.9%in the SZ-top layer and 20.4%in the SZ-bottom layer,accompanied by a 25%decrease in hardness in the SZ-top layer and 26.7%in the SZ-bottom layer,indicating strain recovery and reduced dislocation density.Potentiodynamic polarization tests(PDP)showed a 18%increase in pitting potential and a 76%reduction in corrosion rate after PWHT.The improvement in corrosion resistance is attributed to the increase inΣ3 twin boundaries,which enhance grain boundary stability and reduce susceptibility to localized corrosion.These findings highlight the role of PWHT in refining the microstructure and strengthening corrosion resistance,making HNASS a promising material for demanding applications.
基金funded by Key R&D Projects in Hubei Province (Grant No.2020BCA084)Innovative Group Project of Hubei Natural Science Foundation (Grant No.2020CFA043)。
文摘Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in different regions.The above experiments were numerically simulated,and the simulated shock wave overpressure waveforms were compared with that tested and given by CONWEP program.The results show that the numerically simulated waveform is slightly different from the test waveform,but similar to CONWEP waveform.Through dimensional analysis and numerical simulation under different working conditions,the equation for the attenuation rate of the diffraction overpressure behind the blast wall was obtained.According to the corresponding standards,the degree of casualties and the damage degree of the brick concrete building at a certain distance behind the wall can be determined when parameters are set.The above results can provide a reference for the design and construction of the reinforced concrete blast wall.
基金supported by Science Challenge Project [No TZ2018001]Shandong Provincial Natural Science Foundation [No ZR2017BA014]+1 种基金National Natural Science Foundation of China [No91630312]the Development Program for Defense Ministry of China [No.C1520110002]
文摘The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE) technique has become the third pillar of detonation research, along with theory and experiment, due to the detonation phenomenon is difficult to explain by the theoretical analysis, and the cost required to accredit the reliability of detonation products is very high, even some physical experiments of detonation are impossible. The numerical simulation technique can solve these complex problems in the real situation repeatedly and reduce the design cost and time stunningly. But the reliability of numerical simulation software and the serviceability of the computational result seriously hinders the extension, application and the self-restoration of the simulation software, restricts its independently innovational ability. This article deals with the physical modeling, numerical simulation, and software development of detonation in a unified way. Verification and validation and uncertainty quantification (V&V&UQ) is an important approach in ensuring the credibility of the modeling and simulation of detonation. V&V of detonation is based on our independently developed detonation multiphysics software-LAD2D. We propose the verification method based on mathematical theory and program function as well as availability of its program execution. Validation is executed by comparing with the experiment data. At last, we propose the future prospect of numerical simulation software and the CAE technique, and we also pay attention to the research direction of V&V&UQ.
基金Project(20070497048) supported by China Scholarship Council,Ministry of Education of China
文摘The features of the techniques of fast reducing roasting (FRR) and conventional magnetic roasting, as well as tremendous demands of iron ores in iron and steel industry of China, were briefly described. The test equipment suitable for FRR of fine-grained materials was introduced. Weakly magnetic materials with grain size of 〈0.30 mm were converted into strongly magnetic materials by FRR for several to dozens of seconds. In a weakly reducing atmosphere and at 740-800 ~C, refractory powder iron material (〈0.30 mm) which is rich in specularite, limonite and Mg-Mn siderite was subjected to FRR for a few seconds to 60 s. Concentrate with iron grade of 55.67%-55.21%, high contents of Mg and Mn in the ore is obtained and the yield of magnetic separation reaches 81.66%-86.57%. The results of X-ray diffraction (XRD) analysis and magnetism detection of the material before and after FRR indicate that weakly magnetic material is mainly converted into strongly magnetic material Fe304 with specific saturation magnetic moment. The efficiency of FRR is consistent with TFe recovery of magnetic separation; meantime, the specific sa^u'ation magnetic moment increases from 33 to 42 times after FRR. Calculations show that speeds of flash magnetic roasting are obtained from several dozen to two or three hundred times, compared with rotary kiln or shaft furnace. This indicates that it is practicable to use the fast reducing roasting technique to improve the comprehensive utilization of iron ore resources.
基金Project(2017XKZD09)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Textile-reinforced concrete(TRC)is suitable to repair and reinforce concrete structures in harsh environments.The performance of the interface between TRC and existing concrete is an important factor in determining the strengthening effect of TRC.In this paper,a double-sided shear test was performed to investigate the effects of the chloride dry-wet cycles on the average shear strength and slip at the interface between the TRC and existing concrete,also considering the existing concrete strength,bond length,textile layer and short-cut fiber arrangements.In addition,X-ray diffraction(XRD)technology was used to analyze the microscopic matter at the interface in the corrosive environment.The experimental results indicate that the interface performance between TRC and existing concrete would decrease with continued chloride dry-wet cycles.Compared with the specimen with a single layer of textile reinforcement,the specimens with two layers of textile with added PVA or AR-glass short-cut fibers could further improve the properties of the interface between the TRC layer and existing concrete.For the TRC with a single layer of textile,the average shear strength tended to decrease with increasing bond length.In addition,the strength grade of the existing concrete had a minor effect on the interface properties.
基金Projects(51808300,51778302)supported by the National Natural Science Foundation of ChinaProject supported by the K.C.Wong Magna Fund in Ningbo University,China。
文摘Thermogravimetric analysis and electrical resistivity were used to determine the hydration process of cement paste with rice husk ash(RHA)(0−15%)and water-cement ratio of 0.4 in this work.X-ray diffraction(XRD)method and scanning electron microscopy(SEM)were used to survey crystal composition and microstructures of specimens cured for 3 h,1 d,7 d and 28 d.Finally,electrical parameters(electrical resistance and AC impedance spectroscopy)of steel bars reinforced cement paste were investigated to study the effect of RHA on the corrosion resistance.Results showed that RHA could affect the cement hydration by hydration promotion and pozzolanic effect.The evaluation function for electrical resistivity and curing ages fitted well with linear increasing function.The addition of RHA higher than 5%demonstrated a decreasing role in the electrical resistivity of cement paste at earlier curing ages(3−7 d).Meanwhile,when at later curing ages(7−28 d)the result was the opposite.Moreover,RHA demonstrated positive effects on corrosion resistance of steel bars in cement paste.
文摘Non Pt based metals and alloys as electrode materials for methyl alcohol fuel cells have been investigated w ith an aim of finding high electrocatalytic surface property for the faster electrode reactions.Electrodes w ere fabricated by electrodeposition on pure Al foil,from an electrolyte of Ni,Co,Fe salts.The optimum condition of electrodeposition w ere found out by a series of experiments,varying the chemistry of the electrolyte,pH valve,temperature,current and cell potential.Polarization study of the coated Ni-Co or Ni-CoFe alloy on pure Al w as found to exhibit high exchange current density,indicating an improved electro catalytic surface w ith faster charge-discharge reactions at anode and cathode and low overvoltage.Electrochemical impedance studies on coated and uncoated surface clearly show ed that the polarization resistance and impedance w ere decreased by Ni-Co or Ni-Co-Fe coating.X-ray diffraction(XRD),energy dispersive X-ray spectroscopy(EDX)and atomic absorption spectroscopy(AAS)studies confirmed the presence of alloying elements and constituents of the alloy.The morphology of the deposits from scanning electron microscope(SEM)images indicated that the electrode surface w as a three dimensional space w hich increased the effective surface area for the electrode reactions to take place.
基金Projects(51208333,51078253)supported by the National Natural Science Foundation of China
文摘In order to simulate and study the mechanism of cement stabilized soils polluted by different contents of magnesium sulfate(MS), a series of tests were conducted on the cemented soil samples, including unconfined compression strength(UCS) tests of blocks, X-ray diffraction(XRD) phase analysis of powder samples, microstructure by scanning electronic microscopy(SEM),element composition by energy dispersive spectrometry(EDS), and pore distribution analysis by Image Processed Plus 6.0(IPP 6.0)software. The UCS test results show that UCS of cemented soils reaches the peak value when the MS content is 4.5 g/kg. While, the UCS for Sample MS4 having the MS content of 18.0 g/kg is the lowest among all tested samples. Based on the EDS analysis results,Sample MS4 has the greater contents for the three elements, oxygen(O), magnesium(Mg) and sulfur(S), than Sample MS1. From the XRD phase analysis, C-A-S-H(3Ca O·Al2O3·3Ca SO4·32H2O and 3Ca O·Al2O3·Ca SO4·18H2O), M-A-H(Mg O·Al2O3·H2O), M-S-H(Mg O·Si O2·H2O), Mg(OH)2 and Ca SO4 phase diffraction peaks are obviously intense due to the chemical action associated with the MS. The pore distribution analysis shows that the hydrated products change the distribution of cemented soil pores and the pores with average diameter(AD) of 2-50 μm play a key role in terms of the whole structure of cemented soil. The microscopic structure of the cemented soil with MS exhibits the intertwined and embedded characteristics between the cement and granular soils from the SEM images of cemented soils. The microstructure analysis shows that the magnesium sulfate acts as the additive, which is beneficial to the soil strength when the MS content is low(i.e., Sample MS2). However, higher MS amount involving a chemical action makes samples crystallize and expand, which is adverse to the UCS of cemented soils(i.e., Sample MS4).
基金This research was funded by Faculty of Engineering,King Mongkut’s Institute of Technology Ladkrabang.
文摘Transformation-induced plasticity(TRIP)steel possesses high strength and formability,enabling the use of a thinner gauge material and allowing for the fabrication of complex shapes.In this research,we measured the effect of bending temperatures on the microstructure and air-bending springback angle of TRIP steel at temperatures from 25 to 600C.Real-time in situ X-ray diffraction and scanning electron microscopy were used for pre-and postbending analysis.As the prebending temperature increased from 25C to 600C,the retained austenite(RA)volume fraction decreased,and the RA transformed to bainite at temperatures above 400C.The springback angle was positively correlated with the prebending RA volume fraction,with the smallest springback angle achieved at 400C.Additionally,the springback angle was positively correlated with the bending angle,because the RA transformation ratio contributed to increased strain hardening.Further microstructure analysis revealed that the RA became elongated in the tension direction as the bending temperatures increased.
文摘The present study focuses on the mitigation of shock wave using novel geometric passages in the flow field.The strategy is to produce multiple shock reflections and diffractions in the passage with minimum flow obstruction,which in turn is expected to reduce the shock wave strength at the target location.In the present study the interaction of a plane shock front(generated from a shock tube)with various geometric designs such as,1)zig-zag geometric passage,2)staggered cylindrical obstructions and 3)zigzag passage with cylindrical obstructions have been investigated using computational technique.It is seen from the numerical simulation that,among the various designs,the maximum shock attenuation is produced by the zig-zag passage with cylindrical obstructions which is then followed by zig-zag passage and staggered cylindrical obstructions.A comprehensive investigation on the shock wave reflection and diffraction phenomena happening in the proposed complex passages have also been carried out.In the new zig-zag design,the initial shock wave undergoes shock wave reflection and diffraction process which swaps alternatively as the shock front moves from one turn to the other turn.This cyclic shock reflection and diffraction process helps in diffusing the shock wave energy with practically no obstruction to the flow field.It is found that by combining the shock attenuation ability of zig-zag passage(using shock reflection and diffraction)with the shock attenuation ability of cylindrical blocks(by flow obstruction),a drastic attenuation in shock strength can be achieved with moderate level of flow blocking.
基金the Key Program of National Natural Science Foundation of China (60432040)ChinaPostdoctors Science Foundation (20060390792).
文摘A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain technique for describing the transient electromagnetic field reflected from wall, floor, ceiling, and objects. The polarization of the received waveform is determined by taking into account the radiation pattern of the transmitting and receiving antennas, as well as the polarization changes owing to every reflection. The model provides more intrinsical interpretations for UWB pulse propagation in realistic indoor environment.
基金This work was supported by the National Natural Science Foundation of China(61372033).
文摘The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geometric theory of the diffraction(GTD)model are estimated at low signal-to-noise ratio(SNR).To solve this problem,a modified 3D-ESPRIT algorithm is proposed.The modified algorithm improves the parameter estimation accuracy by proposing a novel spatial smoothing technique.Firstly,we make cross-correlation of the auto-correlation matrices;then by averaging the cross-correlation matrices of the forward and backward spatial smoothing,we can obtain a novel equivalent spatial smoothing matrix.The formula of the modified algorithm is derived and the performance of this improved method is also analyzed.Then we compare root-meansquare-errors(RMSEs)of different parameters and the locating accuracy obtained by different algorithms.Furthermore,radar cross section(RCS)of radar targets is extrapolated.Simulation results verify the effectiveness and superiority of the modified 3DESPRIT algorithm.
基金Sponsored by the Matching Project of Commission of Scientific and Technical Industry on National Defence(JPPT-×××-1)
文摘The precipitation of MgZn2 phase in aging process of Al-Zn-Mg-Cu alloy forging was characterized qualitatively after transmission electron microscope(TEM)observation,X-ray diffraction phase analysis and the exact measure of lattice parameter.And,the precipitation of the second-phase in aging process was simulated after test the resistivity of the alloy in a continuous heating process and delayed time processing.The results show that when heating in the same rate,the alloy resistivity increases with temperature first,a mutation point appears at 110℃,and the resistivity reaches its peak at 120℃.Then,the resistivity decreases and achieves a minimum at about 170℃.Afterwards,it increases again.The change of resistivity results from a combined effect of the temperature and phase transformation.The volume precipitation of η' phase dominates at about 120℃,and the resistivity of forgings decreases accordingly.When the specimen cools in a furnace at 240℃,the phase transformation finishes basically and the alloy content of Al-matix keeps stable,thus,the alloy resistivity depends on the temperature only.It decreases with temperature and time since the end of precipitation.The higher the temperature is,the bigger it will be.With a big descending rate of the resistivity curve,the time to reach the stable value becomes shorter.
基金Project(51276154)supported by the National Natural Science Foundation of ChinaProject(2012010111014)supported by the University Doctoral Subject Special Foundation of China
文摘The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu_2(CeCu_2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of HoCu_2 were a mixture of Cu, unknown hydride Ⅰ, and unknown hydride Ⅱ. Based on the PCT(pressure-concentration-temperature) curves under different reaction temperatures, the relationships among reaction temperature, equilibrium pressure, and maximum hydrogen absorption capacity were analyzed and discussed. The enthalpy change ΔH and entropy change ΔS as a result of the whole hydrogenation process were also calculated from the PCT curves. The magnetization and volumetric specific heat capacity of the hydride were also measured by SQUID magnetometer and PPMS, respectively.