The variance-dependent Goldstein radar interferogram filter takes into account the information of both interferometric coherence and multilook factors,and can produce very consistent results for interferograms generat...The variance-dependent Goldstein radar interferogram filter takes into account the information of both interferometric coherence and multilook factors,and can produce very consistent results for interferograms generated under a wide variety of multilook factors and with very different noise level.However,the filter is a bit complicated and its application is still very limited.We present the designing and implementation of the variance-dependent Goldstein radar interferogram filtering,emphasizing on the logic flow,the generation of look-up table,the determination of filtering parameter,and the handling of edge information loss.Experiments with real interferograms are provided to demonstrate the applications of the designed filtering.Comparisons with the result of the coherence-dependent Goldstein filter show that improvements from 18.4% to 36.9% are achieved when the variance-dependent filter is used,and the noisier the interferogram,the greater the improvement.展开更多
This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar(BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic ap...This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar(BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic aperture radar(SAR) interferometry. The study of temporal decorrelation is challenging, especially for the bistatic configuration, since temporal decorrelation is related to the data acquisition geometry. To develop an appropriate theoretical model for BSAR interferometry, the existing models for monostatic SAR cases are extended, and the general BSAR geometry configuration is involved in the derivation. Therefore, the developed temporal decorrelation model can be seen as a general model.The validity of the theoretical model is supported by Monte Carlo simulations. Furthermore, the impacts of the system parameters and BSAR geometry configurations on the temporal decorrelation model are discussed briefly.展开更多
基金Project(2013CB733303)supported by the National Basic Research Program of ChinaProjects(41222027,11103068,41104003)supported by the National Natural Science Foundation of China+3 种基金Project(13JJ1006)supported by Hunan Provincial Natural Science Foundation,ChinaProject(TXCL-KF2013-002)supported by the Key Laboratory of Videometric and Vision Navigation of Hunan Province,ChinaProject(SKLGED2013-2-1-E)supported by the State Key Laboratory of Geodesy and Earth’s Dynamics,ChinaProject(K201208)supported by the Key Laboratory of Earth Observation Technique of National Administration of Surveying,Mapping and Geoinformation,China
文摘The variance-dependent Goldstein radar interferogram filter takes into account the information of both interferometric coherence and multilook factors,and can produce very consistent results for interferograms generated under a wide variety of multilook factors and with very different noise level.However,the filter is a bit complicated and its application is still very limited.We present the designing and implementation of the variance-dependent Goldstein radar interferogram filtering,emphasizing on the logic flow,the generation of look-up table,the determination of filtering parameter,and the handling of edge information loss.Experiments with real interferograms are provided to demonstrate the applications of the designed filtering.Comparisons with the result of the coherence-dependent Goldstein filter show that improvements from 18.4% to 36.9% are achieved when the variance-dependent filter is used,and the noisier the interferogram,the greater the improvement.
基金supported by the National Natural Science Foundation of China(6110117861271441)
文摘This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar(BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic aperture radar(SAR) interferometry. The study of temporal decorrelation is challenging, especially for the bistatic configuration, since temporal decorrelation is related to the data acquisition geometry. To develop an appropriate theoretical model for BSAR interferometry, the existing models for monostatic SAR cases are extended, and the general BSAR geometry configuration is involved in the derivation. Therefore, the developed temporal decorrelation model can be seen as a general model.The validity of the theoretical model is supported by Monte Carlo simulations. Furthermore, the impacts of the system parameters and BSAR geometry configurations on the temporal decorrelation model are discussed briefly.