We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed proces...We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed process,are considered.Under certain conditions,we prove the strong consistency and the asymptotic normality of the two estimators.Our method is also suitable for one-sided reflected stochastic differential equations.Simulation results demonstrate that the performance of our estimator is superior to that of the estimator proposed by Cholaquidis et al.(Stat Sin,2021,31:29-51).Several real data sets of the currency exchange rate are used to illustrate our proposed methodology.展开更多
The present article is devoted to nonlinear stochastic partial differential equations with double reflecting walls driven by possibly degenerate,multiplicative noise.We prove that the corresponding Markov semigroup po...The present article is devoted to nonlinear stochastic partial differential equations with double reflecting walls driven by possibly degenerate,multiplicative noise.We prove that the corresponding Markov semigroup possesses an exponentially attracting invariant measure through asymptotic coupling,in which Foias-Prodi estimation and the truncation technique are crucial for the realization of the Girsanov transform.展开更多
基金partially supported by the National Natural Science Foundation of China(11871244)the Fundamental Research Funds for the Central Universities,JLU。
文摘We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed process,are considered.Under certain conditions,we prove the strong consistency and the asymptotic normality of the two estimators.Our method is also suitable for one-sided reflected stochastic differential equations.Simulation results demonstrate that the performance of our estimator is superior to that of the estimator proposed by Cholaquidis et al.(Stat Sin,2021,31:29-51).Several real data sets of the currency exchange rate are used to illustrate our proposed methodology.
基金supported by the National Natural Science Foundation of China(12071480)the Scientific Research Program Funds of NUDT(22-ZZCX-016)the Hunan Provincial Innovation Foundation for Postgraduate(CX20230003)。
文摘The present article is devoted to nonlinear stochastic partial differential equations with double reflecting walls driven by possibly degenerate,multiplicative noise.We prove that the corresponding Markov semigroup possesses an exponentially attracting invariant measure through asymptotic coupling,in which Foias-Prodi estimation and the truncation technique are crucial for the realization of the Girsanov transform.