期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
CONSERVATIVE DIFFERENCE SCHEME BASED ON NUMERICAL ANALYSIS FOR NONLINEAR SCHRDINGER EQUATION WITH WAVE OPERATOR 被引量:2
1
作者 王廷春 张鲁明 陈芳启 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第2期87-93,共7页
A new conservative finite difference scheme is presented based on the numerical analysis for an initialboundary value problem of a class of Schroedinger equation with the wave operator. The scheme can be linear and im... A new conservative finite difference scheme is presented based on the numerical analysis for an initialboundary value problem of a class of Schroedinger equation with the wave operator. The scheme can be linear and implicit or explicit based on the parameter choice. The initial value after discretization has second-order accuracy that is consistent with the scheme accuracy. The existence and the uniqueness of the difference solution are proved. Based on the priori estimates and an inequality about norms, the stability and the convergence of difference solutions with the second-order are proved in the energy norm. Experimental results demonstrate the efficiency of the new scheme. 展开更多
关键词 Schroedinger equation difference scheme CONSERVATION existence and uniqueness of solution CONVERGENCE
在线阅读 下载PDF
A-high-order Accuraqcy Implicit Difference Scheme for Solving the Equation of Parabolic Type 被引量:7
2
作者 马明书 王肖凤 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第2期94-97,共4页
In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(... In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method. 展开更多
关键词 equation of one_dimension parabolic type high_order accuracy implicit difference scheme
在线阅读 下载PDF
An Explicit Difference Scheme with High Accuracy and Branching Stability for Solving Parabolic Partial Differential Equation 被引量:4
3
作者 马明书 王肖凤 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第4期98-103,共6页
This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△... This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2. 展开更多
关键词 parabolic type equation explicit difference scheme high accuracy branching stability truncation er
在线阅读 下载PDF
The Stability Research for the Finite Difference Scheme of a Nonlinear Reaction-diffusion Equation 被引量:6
4
作者 XU Chen-mei 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第2期222-227,共6页
In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite differ... In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme. 展开更多
关键词 reaction-diffusion equation finite difference scheme stability research variational approximation method
在线阅读 下载PDF
Improving the Stability Problem of the Finite Difference Scheme for Reaction-diffusion Equation 被引量:2
5
作者 XU Chen-mei 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第3期403-408,共6页
This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incr... This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incremental unknowns methods. Through the stability analyzing for the scheme, it was shown that the stability conditions of the finite difference schemes with the incremental unknowns are greatly improved when compared with the stability conditions of the corresponding classic difference scheme. 展开更多
关键词 reaction-diffusion equation difference scheme stability problem incremental unknowns
在线阅读 下载PDF
A Class of High Accuracy Explicit Difference Schemes for Solving the Heat-conduction Equation of High-dimension 被引量:1
6
作者 CHEN Zhen-zhong MA Xiao-xia 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第2期236-243,共8页
In this paper, a class of explicit difference schemes with parameters for solving five-dimensional heat-conduction equation are constructed and studied.the truncation error reaches O(τ^2+ h%4), and the stability c... In this paper, a class of explicit difference schemes with parameters for solving five-dimensional heat-conduction equation are constructed and studied.the truncation error reaches O(τ^2+ h%4), and the stability condition is given. Finally, the numerical examples and numerical results are presented to show the advantage of the schemes and the correctness of theoretical analysis. 展开更多
关键词 heat-conduction equation explicit difference scheme truncation error conditional stability
在线阅读 下载PDF
A Crank-Nicolson Difference Scheme for Generalized Rosenau Equation 被引量:1
7
作者 胡劲松 王玉兰 徐友才 《Journal of Southwest Jiaotong University(English Edition)》 2010年第3期254-259,共6页
Much effort has been devoted to researching the common Rosenau equation, but the numerical method of it has not been studied. In this paper, a conservative Crank-Nicolson difference scheme for an initial-boundary valu... Much effort has been devoted to researching the common Rosenau equation, but the numerical method of it has not been studied. In this paper, a conservative Crank-Nicolson difference scheme for an initial-boundary value problem of the generalized Rosenau equation is proposed. Existence and uniqueness of numerical solutions are derived. By method of discrete energy, the second order convergence and stability are discussed. Numerical examples demonstrate the theoretical results. 展开更多
关键词 Generalized Rosenau equation difference scheme Conservative rule CONVERGENCE Stability
在线阅读 下载PDF
Overlapping Domain Decomposition Finite Difference Algorithm for Compact Difference Scheme of the Heat Conduction Equation
8
作者 张红梅 《Chinese Quarterly Journal of Mathematics》 2015年第4期495-502,共8页
In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspac... In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspace correction. The basic train of thought is the introduction of the units function decomposition and reasonable distribution of the overlap of correction. The residual correction is conducted on each subspace while the computation is completely parallel. The theoretical analysis shows that this method is completely characterized by parallel. 展开更多
关键词 heat equation compact difference scheme domain decomposition partition of unity subspace correction
在线阅读 下载PDF
A Class of Two-level High-order Accuracy Explicit Difference Scheme for Solving 3-D Parabolic Partial Differential Equation
9
作者 WANG Tong-ke,MA Ming-shu,REN Zong-xiu (College of Mathematics and Information Science, Henan Normal University,Xinxiang 453002,China) 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第1期17-20,共4页
A class of two-level high-order accuracy explicit difference scheme for solving 3-D parabolic P.D.E is constructed. Its truncation error is (Δt2+Δx4) and the stability condition is r=Δt/Δx2=Δt/Δy2=Δt/Δz2≤1/6.
关键词 D parabolic P.E.E. explicit difference scheme truncation error
在线阅读 下载PDF
LARGE TIME STEP GENERALIZATION OF RANDOM CHOICE FINITE DIFFERENCE SCHEME FOR HYPERBOLIC CONSERVATION LAWS
10
作者 Wang Jinghua Inst. of Syst. Sci., Academia Sinica, Beijing, China 《Acta Mathematica Scientia》 SCIE CSCD 1989年第1期33-42,共10页
A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of ... A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of their conserved quantities. We show consistency of the scheme for arbitrarily large Courant numbers. For scalar problems the scheme is total variation diminishing.A brief discussion is given for entropy condition. 展开更多
关键词 LARGE TIME STEP GENERALIZATION OF RANDOM CHOICE FINITE difference scheme FOR HYPERBOLIC CONSERVATION LAWS STEP
在线阅读 下载PDF
A Family of High_order Accuracy Explicit Difference Schemes for Solving 2-D Parabolic Partial Differential Equation 被引量:4
11
作者 任宗修 陈贞忠 王肖凤 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第3期57-61,共5页
A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx... A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx 4). 展开更多
关键词 D parabolic P.D.E high_order accuracy explic it difference scheme
在线阅读 下载PDF
HIGH RESOLUTION POSITIVITY-PRESERVING DIFFERENCE SCHEMES FOR TWO DIMENSIONAL EULER EQUATIONS
12
作者 赵宁 张虎 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期163-168,共6页
A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By usi... A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By using a kind of special interpolation, the high resolution Boltzmann type difference scheme is constructed. Finally, numerical tests show that the schemes are effective and useful. 展开更多
关键词 Euler equation Boltzmann equation finite difference scheme positivity preserving
在线阅读 下载PDF
A High-order Accuracy Explicit Difference Scheme with Branching Stability for Solving Higher-dimensional Heat-conduction Equation 被引量:3
13
作者 MA Ming-shu MA Ju-yi +1 位作者 GU Shu-min ZHU Lin-lin 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第3期446-452,共7页
A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncatio... A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncation error is O(△t^2 + △x^4). 展开更多
关键词 heat-conduction equation explicit difference scheme high-order accuracy branching stability
在线阅读 下载PDF
THE UPWIND OPERATOR SPLITTING FINITE DIFFERENCE METHOD FOR COMPRESSIBLE TWO-PHASE DISPLACEMENT PROBLEM AND ANALYSIS
14
作者 袁益让 《Acta Mathematica Scientia》 SCIE CSCD 2002年第4期489-499,共11页
For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation r... For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution. 展开更多
关键词 two-phase displacement two-dimensional compressibility upwind operator splitting finite difference schemes convergence analysis
在线阅读 下载PDF
Convergence on Finite Difference Solution for Semilinear Wave Equation in One Space Variable
15
作者 鲁百年 房少梅 《Chinese Quarterly Journal of Mathematics》 CSCD 1997年第3期35-40, ,共6页
In this paper,the convergence and stability of the ’Leap-frog’ finite difference scheme for the semilinear wave equation are proved by using of the bounded extensive method under more generalized condition for the n... In this paper,the convergence and stability of the ’Leap-frog’ finite difference scheme for the semilinear wave equation are proved by using of the bounded extensive method under more generalized condition for the nonlinear term. The more complex standard a priori estimates are avoided so that the theoretical results are complemented for the scheme which was presented by Perring and Skyrne (1962). 展开更多
关键词 semilinear wave equation Leap-frog finite difference scheme convergence and stability
在线阅读 下载PDF
Determination of temperature distribution and control parameter in a two-dimensional parabolic inverse problem with overspecified data 被引量:1
16
作者 李福乐 张洪谦 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期1-7,共7页
In this paper, we present a new algorithm to solve a two-dimensional parabolic inverse problem with a source parameter, which appears in many physical phenomena. A linearized compact difference scheme for this problem... In this paper, we present a new algorithm to solve a two-dimensional parabolic inverse problem with a source parameter, which appears in many physical phenomena. A linearized compact difference scheme for this problem is constructed using the finite difference method. The discretization accuracy is second-order in time and fourth-order in space. We obtain the unique solvability and present an alternating direction implicit algorithm to solve this difference scheme. The results of numerical experiments are presented to demonstrate the accuracy of this algorithm. 展开更多
关键词 control parameter temperature distribution finite difference scheme SOLVABILITY
在线阅读 下载PDF
Compact ADI Method for Solving Heat Equations in Multi-dimension
17
作者 王晓峰 袁合才 《Chinese Quarterly Journal of Mathematics》 CSCD 2011年第4期556-562,共7页
A compact alternating direction implicit(ADI) method has been developed for solving multi-dimensional heat equations by introducing the differential operators and the truncation error is O(τ 2 + h 4 ). It is shown by... A compact alternating direction implicit(ADI) method has been developed for solving multi-dimensional heat equations by introducing the differential operators and the truncation error is O(τ 2 + h 4 ). It is shown by the discrete Fourier analysis that this new ADI scheme is unconditionally stable and the truncation error O(τ 3 + h 6 ) is gained with once Richardson's extrapolation. Some numerical examples are presented to demonstrate the efficiency and accuracy of the new scheme. 展开更多
关键词 heat equation differential operators ADI difference scheme absolutely stable
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部