A much larger amount of bonded hydrogen was found in thick nanocrystalline diamond (NCD) films produced by only adding 0.24% N2 into 4% CH4/H2 plasma, as compared to the high quality transparent microcrystalline dia...A much larger amount of bonded hydrogen was found in thick nanocrystalline diamond (NCD) films produced by only adding 0.24% N2 into 4% CH4/H2 plasma, as compared to the high quality transparent microcrystalline diamond (MCD) films, grown using the same growth parameters except for nitrogen. These experimental results clearly evidence that defect formation and impurity incorporation (for example, N and H) impeding diamond grain growth is the main formation mechanism of NCD upon nitrogen doping and strongly support the model proposed in the literature that nitrogen competes with CHx (x = 1, 2, 3) growth species for adsorption sites.展开更多
A positive grid bias and a negative substrate bias voltages are applied to the self-made hot filament chemical vapor deposited (HFCVD) system. The high quality nanocrystalline diamond (NCD) film is successfully de...A positive grid bias and a negative substrate bias voltages are applied to the self-made hot filament chemical vapor deposited (HFCVD) system. The high quality nanocrystalline diamond (NCD) film is successfully deposited by double bias voltage nucleation and grid bias voltage growth. The Micro-Raman XRD SEM and AFM are used to investigate the diamond grain size, microstructure, surface morphology, and nucleation density. Results show that the obtained NCD has grain size of about 20 nm. The effect of grid bias voltage on the nucleation and the diamond growth is studied. Experimental results and theoretical analysis show that the positive grid bias increases the plasma density near the hot filaments, enhances the diamond nucleation, keeps the nanometer size of the diamond grains, and improves the quality of diamond film.展开更多
The effects of different surface pretreatment nmthods on the nucleation and growth of ultra-nanocrystalline diamond (UNCD) fihns grown from focused microwave Ar/CHa/H2 (argon- rich) plasma were systematically stud...The effects of different surface pretreatment nmthods on the nucleation and growth of ultra-nanocrystalline diamond (UNCD) fihns grown from focused microwave Ar/CHa/H2 (argon- rich) plasma were systematically studied. The surface roughness, nucleation density, mierostruc- ture, and crystallinity of the obtained UNCD films were characterized by atomic force microscope (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. The results indicate that the nucleation enhancement was found to be sensitive to the different sur- face pretreatment methods, and a higher initial nucleation density leads to highly smooth UNCD films. When the silicon substrate was pretreated by a two-step method, i.e., plasma treatment followed by ultrasonic vibration with diamond nanopowder, the grain size of the UNCD films was greatly decreased: about 7.5 nm can be achieved. In addition, the grain size of UNCD films depends on the substrate pretreatment methods and roughness, which indicates that the surface of substrate profile has a "genetic characteristic".展开更多
The electron field emission from Si tips coated with nanocrystalline diamond films was investigated. The Si tips were formed by plasma etching, and nano-diamond films were deposited on the Si tips by hot filament chem...The electron field emission from Si tips coated with nanocrystalline diamond films was investigated. The Si tips were formed by plasma etching, and nano-diamond films were deposited on the Si tips by hot filament chemical vapor deposition. The radius of curvature for the Si tips was averagely about 50 nm. The microstructure of the diamond films was examined by scanning electron microscopy and Raman spectroscopy. The field emission properties of the samples were measured in an ion-pumped vacuum chamber at a pressure of 106 Pa. The experimental results showed that the nanostructured films on Si tips exhibited a lower value of the turn-on electric field than those on flat Si substrates. It was found that the tip shape and non-diamond phase in the films had a significant effect on the field emission properties of the films.展开更多
Nitrogen-doped nanocrystalline diamond films(N-NDFs)have been deposited on p-type silicon(Si)by microwave plasma chemical vapor deposition.The reaction gases are methane,hydrogen,and nitrogen without the conventional ...Nitrogen-doped nanocrystalline diamond films(N-NDFs)have been deposited on p-type silicon(Si)by microwave plasma chemical vapor deposition.The reaction gases are methane,hydrogen,and nitrogen without the conventional argon(Ar).The N-NDFs were characterized by X-ray diffraction,Raman spectroscopy,and scanning electron microscopy.The grain sizes are of 8~10 nm in dimension.The N-NDF shows n-type behavior and the corresponding N-NDF/p-Si heterojunction diodes are realized with a high rectification ratio of 102 at^7.8 V,and the current density reaches to1.35 A/cm2 at forward voltage of 8.5 V.The findings suggest that fabricated by CH_4/H_2/N_2 without Ar,the N-NDFs and the related rectifying diodes are favorable for achieving high performance diamond-based optoelectronic devices.展开更多
In this study, growth of mirror-like ultra-nanocrystalline diamond(UNCD) films by a facile hybrid CVD approach was presented. The nucleation and deposition of UNCD films were conducted in microwave plasma CVD(MPCVD...In this study, growth of mirror-like ultra-nanocrystalline diamond(UNCD) films by a facile hybrid CVD approach was presented. The nucleation and deposition of UNCD films were conducted in microwave plasma CVD(MPCVD) and direct current glow discharge CVD(DC GD CVD) on silicon substrates, respectively. A very high nucleation density(about 1×10^11 nuclei cm^-2) was obtained after plasma pretreatment. Furthermore, large area mirrorlike UNCD films of Φ 50 mm were synthesized by DC GD CVD. The thickness and grain size of the UNCD films are 24 μm and 7.1 nm, respectively. In addition, the deposition mechanism of the UNCD films was discussed.展开更多
In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grai...In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grains) were realized with low(high) boron source flow rate during the growth processes.The transition of micro-grains to nano-grains is speculated to be strongly(weekly) related with the boron(nitrogen) flow rate.The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate.The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples,which are related to the combined phase composition,boron doping level and texture structure.There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.展开更多
By pre-treating substrate with different methods and patterning the catalyst, selective and patterned growth of diamond and graphitic nano-structured carbon films have been realized through DC Plasma-Enhanced Hot Fila...By pre-treating substrate with different methods and patterning the catalyst, selective and patterned growth of diamond and graphitic nano-structured carbon films have been realized through DC Plasma-Enhanced Hot Filament Chemical Vapor Deposition (PE-HFCVD). Through two-step processing in an HFCVD reactor, novel nano-structured composite diamond films containing a nanocrystalline diamond layer on the top of a nanocone diamond layer have been synthesized. Well-aligned carbon nanotubes, diamond and graphitic carbon nanocones with controllable alignment orientations have been synthesized by using PE-HFCVD. The orientation of the nanostructures can be controlled by adjusting the working pressure. In a Microwave Plasma Enhanced Chemical Vapor Deposition (MW-PECVD) reactor, high-quality diamond films have been synthesized at low temperatures (310℃-550℃) without adding oxygen or halogen gas in a newly developed processing technique. In this process, carbon source originates from graphite etching, instead of hydrocarbon. The lowest growth temperature for the growth of nanocrystalline diamond films with a reasonable growth rate without addition of oxygen or halogen is 260℃.展开更多
首先对热丝化学气相沉积(Chem ica l vapor depos ition,CVD)系统进行改造,设计了在真空室外对室内试样进行操纵的机械手系统和储料台,实现了一次热丝碳化后完成多个不同工艺条件下试样的连续沉积。有限元仿真研究结果表明,多衬底温度...首先对热丝化学气相沉积(Chem ica l vapor depos ition,CVD)系统进行改造,设计了在真空室外对室内试样进行操纵的机械手系统和储料台,实现了一次热丝碳化后完成多个不同工艺条件下试样的连续沉积。有限元仿真研究结果表明,多衬底温度场比较均匀,适合于金刚石膜的生长。最后,采用改进沉积系统,在A r-CH4-H2气氛中,在多晶钼衬底上成功制备了纳米金刚石薄膜。R am an,XRD和AFM等结果表明,制备的金刚石纯度较高,晶粒大小在30 nm左右,表面光滑。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874021)Natural Science Foundation of Educational Department of Jiangsu Province of China (Grant No. 06kja43014)
文摘A much larger amount of bonded hydrogen was found in thick nanocrystalline diamond (NCD) films produced by only adding 0.24% N2 into 4% CH4/H2 plasma, as compared to the high quality transparent microcrystalline diamond (MCD) films, grown using the same growth parameters except for nitrogen. These experimental results clearly evidence that defect formation and impurity incorporation (for example, N and H) impeding diamond grain growth is the main formation mechanism of NCD upon nitrogen doping and strongly support the model proposed in the literature that nitrogen competes with CHx (x = 1, 2, 3) growth species for adsorption sites.
文摘A positive grid bias and a negative substrate bias voltages are applied to the self-made hot filament chemical vapor deposited (HFCVD) system. The high quality nanocrystalline diamond (NCD) film is successfully deposited by double bias voltage nucleation and grid bias voltage growth. The Micro-Raman XRD SEM and AFM are used to investigate the diamond grain size, microstructure, surface morphology, and nucleation density. Results show that the obtained NCD has grain size of about 20 nm. The effect of grid bias voltage on the nucleation and the diamond growth is studied. Experimental results and theoretical analysis show that the positive grid bias increases the plasma density near the hot filaments, enhances the diamond nucleation, keeps the nanometer size of the diamond grains, and improves the quality of diamond film.
基金supported by National Natural Science Foundation of China(No.11175137)the Research Fund of Wuhan Institute of Technology,China(No.11111051)
文摘The effects of different surface pretreatment nmthods on the nucleation and growth of ultra-nanocrystalline diamond (UNCD) fihns grown from focused microwave Ar/CHa/H2 (argon- rich) plasma were systematically studied. The surface roughness, nucleation density, mierostruc- ture, and crystallinity of the obtained UNCD films were characterized by atomic force microscope (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. The results indicate that the nucleation enhancement was found to be sensitive to the different sur- face pretreatment methods, and a higher initial nucleation density leads to highly smooth UNCD films. When the silicon substrate was pretreated by a two-step method, i.e., plasma treatment followed by ultrasonic vibration with diamond nanopowder, the grain size of the UNCD films was greatly decreased: about 7.5 nm can be achieved. In addition, the grain size of UNCD films depends on the substrate pretreatment methods and roughness, which indicates that the surface of substrate profile has a "genetic characteristic".
基金Natural Science Foundation of China (Nos: 50005027 50345021 and 19904016)
文摘The electron field emission from Si tips coated with nanocrystalline diamond films was investigated. The Si tips were formed by plasma etching, and nano-diamond films were deposited on the Si tips by hot filament chemical vapor deposition. The radius of curvature for the Si tips was averagely about 50 nm. The microstructure of the diamond films was examined by scanning electron microscopy and Raman spectroscopy. The field emission properties of the samples were measured in an ion-pumped vacuum chamber at a pressure of 106 Pa. The experimental results showed that the nanostructured films on Si tips exhibited a lower value of the turn-on electric field than those on flat Si substrates. It was found that the tip shape and non-diamond phase in the films had a significant effect on the field emission properties of the films.
基金financially supported by the Programs for New Century Excellent Talents in University(NCETNo.06-0303)the National Natural Science Foundation of China(NSFC,No.50772041)
文摘Nitrogen-doped nanocrystalline diamond films(N-NDFs)have been deposited on p-type silicon(Si)by microwave plasma chemical vapor deposition.The reaction gases are methane,hydrogen,and nitrogen without the conventional argon(Ar).The N-NDFs were characterized by X-ray diffraction,Raman spectroscopy,and scanning electron microscopy.The grain sizes are of 8~10 nm in dimension.The N-NDF shows n-type behavior and the corresponding N-NDF/p-Si heterojunction diodes are realized with a high rectification ratio of 102 at^7.8 V,and the current density reaches to1.35 A/cm2 at forward voltage of 8.5 V.The findings suggest that fabricated by CH_4/H_2/N_2 without Ar,the N-NDFs and the related rectifying diodes are favorable for achieving high performance diamond-based optoelectronic devices.
基金supported by the program of international S&T cooperation(Agreement No.S2015ZR1100)
文摘In this study, growth of mirror-like ultra-nanocrystalline diamond(UNCD) films by a facile hybrid CVD approach was presented. The nucleation and deposition of UNCD films were conducted in microwave plasma CVD(MPCVD) and direct current glow discharge CVD(DC GD CVD) on silicon substrates, respectively. A very high nucleation density(about 1×10^11 nuclei cm^-2) was obtained after plasma pretreatment. Furthermore, large area mirrorlike UNCD films of Φ 50 mm were synthesized by DC GD CVD. The thickness and grain size of the UNCD films are 24 μm and 7.1 nm, respectively. In addition, the deposition mechanism of the UNCD films was discussed.
基金financially supported by The Program for New Century Excellent Talents in University (NCET)the National Natural Science Foundation of China (NSFC) under Grant No.50772041
文摘In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grains) were realized with low(high) boron source flow rate during the growth processes.The transition of micro-grains to nano-grains is speculated to be strongly(weekly) related with the boron(nitrogen) flow rate.The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate.The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples,which are related to the combined phase composition,boron doping level and texture structure.There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.
文摘By pre-treating substrate with different methods and patterning the catalyst, selective and patterned growth of diamond and graphitic nano-structured carbon films have been realized through DC Plasma-Enhanced Hot Filament Chemical Vapor Deposition (PE-HFCVD). Through two-step processing in an HFCVD reactor, novel nano-structured composite diamond films containing a nanocrystalline diamond layer on the top of a nanocone diamond layer have been synthesized. Well-aligned carbon nanotubes, diamond and graphitic carbon nanocones with controllable alignment orientations have been synthesized by using PE-HFCVD. The orientation of the nanostructures can be controlled by adjusting the working pressure. In a Microwave Plasma Enhanced Chemical Vapor Deposition (MW-PECVD) reactor, high-quality diamond films have been synthesized at low temperatures (310℃-550℃) without adding oxygen or halogen gas in a newly developed processing technique. In this process, carbon source originates from graphite etching, instead of hydrocarbon. The lowest growth temperature for the growth of nanocrystalline diamond films with a reasonable growth rate without addition of oxygen or halogen is 260℃.
文摘首先对热丝化学气相沉积(Chem ica l vapor depos ition,CVD)系统进行改造,设计了在真空室外对室内试样进行操纵的机械手系统和储料台,实现了一次热丝碳化后完成多个不同工艺条件下试样的连续沉积。有限元仿真研究结果表明,多衬底温度场比较均匀,适合于金刚石膜的生长。最后,采用改进沉积系统,在A r-CH4-H2气氛中,在多晶钼衬底上成功制备了纳米金刚石薄膜。R am an,XRD和AFM等结果表明,制备的金刚石纯度较高,晶粒大小在30 nm左右,表面光滑。