In this paper,large deviations principle(LDP)and moderate deviations principle(MDP)of record numbers in random walks are studied under certain conditions.The results show that the rate functions of LDP and MDP are dif...In this paper,large deviations principle(LDP)and moderate deviations principle(MDP)of record numbers in random walks are studied under certain conditions.The results show that the rate functions of LDP and MDP are different from those of weak record numbers,which are interesting complements of the conclusions by Li and Yao[1].展开更多
The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological ...The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological noise,there is still a significant gap between its actual precision and theoretical precision.This study identifies the key factor limiting the precision of the SERF gyroscope as coupling noise.By optimizing the detection loop structure,a distinction between the dual-axis signals'response to optical and magnetic fields was achieved-where the optical errors responded similarly,while the response to magnetic noise was opposite.Based on the differences in the optical-magnetic response of the dual-axis signals,empirical mode decomposition was used to decompose the dual-axis gyroscope signals into multiple intrinsic mode functions,and Allan deviation analysis was applied to analyze the noise characteristics of the intrinsic mode functions over various periods.This study successfully reveals that optical errors caused by thermal-optical coupling and long-period magnetic noise induced by thermal-magnetic coupling are the dominant factors limiting the long-term stability of the SERF gyroscope.Based on these analyses,the study concludes that to achieve strategic-grade precision for the SERF gyroscope,it is essential to effectively address the noise issues caused by multi-physical field couplings.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11671145)the Science and Technology Commission of Shanghai Municipality(Grant No.18dz2271000).
文摘In this paper,large deviations principle(LDP)and moderate deviations principle(MDP)of record numbers in random walks are studied under certain conditions.The results show that the rate functions of LDP and MDP are different from those of weak record numbers,which are interesting complements of the conclusions by Li and Yao[1].
基金supported by Hefei National Laboratory,Innovation Program for Quantum Science and Technology(2021ZD0300400/2021ZD0300402)the Beijing Natural Science Foundation(3252013)the China Postdoctoral Science Foundation(2024T171116).
文摘The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological noise,there is still a significant gap between its actual precision and theoretical precision.This study identifies the key factor limiting the precision of the SERF gyroscope as coupling noise.By optimizing the detection loop structure,a distinction between the dual-axis signals'response to optical and magnetic fields was achieved-where the optical errors responded similarly,while the response to magnetic noise was opposite.Based on the differences in the optical-magnetic response of the dual-axis signals,empirical mode decomposition was used to decompose the dual-axis gyroscope signals into multiple intrinsic mode functions,and Allan deviation analysis was applied to analyze the noise characteristics of the intrinsic mode functions over various periods.This study successfully reveals that optical errors caused by thermal-optical coupling and long-period magnetic noise induced by thermal-magnetic coupling are the dominant factors limiting the long-term stability of the SERF gyroscope.Based on these analyses,the study concludes that to achieve strategic-grade precision for the SERF gyroscope,it is essential to effectively address the noise issues caused by multi-physical field couplings.