The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on th...The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on the discrete wavelet transform(DWT),modified energy ratio(MER)and Akaike information criterion(AIC)pickers,has been proposed in this study.First,the DWT is used to decompose the signal into various components.Then,the joint application of MER and AIC pickers is carried out to pick the initial onset times of all selected components,where the minimum AIC position ahead of MER onset time is regarded as the initial onset time.Last,the average for initial onset times of all selected components is calculated as the final onset time of this signal.This improved joint method is tested and validated by the acoustic signals with different signal to noise ratios(SNRs)and waveforms.The results show that the improved joint method is not affected by the variations of SNR,and the onset times picked by this method are always accurate in different SNRs.Moreover,the onset times of all acoustic signals with spikes,heavy bodies and unclear takeoffs can be accurately picked by the improved joint method.Compared to some other methods including MER,AIC,DWT-MER and DWT-AIC,the improved joint method has better SNR stabilities and waveform adaptabilities.展开更多
In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is signif...In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is significantly removed and coded with fuzzy vector quantization. The experimental result shows that the method can not only achieve high compression ratio but also remove noise dramatically.展开更多
针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirica...针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirical wavelet transform,ESEWT)相结合的齿轮振动信号降噪方法,即FBSE-ESEWT。首先,将采集到的齿轮振动信号利用FBSE技术获得其频谱,以替代传统的傅里叶谱,接着凭借能量尺度空间划分法对获取的FBSE频谱进行自适应分割和筛选,以精确定位有效频带的边界点。随后通过构建小波滤波器组得到信号分量并进行重构,以减小噪声和冗余信息干扰;然后,为捕捉到更全面的特征信息将处理后的信号进行广义S变换得到时频图,输入2D卷积神经网络进行故障诊断验证算法可行性。通过对Simulink仿真信号和实际采集信号进行实验,结果表明,相对于原始经验小波变换(EWT)、经验模态分解(EMD)等方法,FBSE-ESEWT具有更好的降噪效果,信噪比提高了13.96 dB,诊断准确率高达98.03%。展开更多
Through research for image compression based on wavelet analysis in recent years, we put forward an adaptive wavelet decomposition strategy. Whether sub-images are to be decomposed or not are decided by their energy d...Through research for image compression based on wavelet analysis in recent years, we put forward an adaptive wavelet decomposition strategy. Whether sub-images are to be decomposed or not are decided by their energy defined by certain criterion. Then we derive the adaptive wavelet decomposition tree (AWDT) and the way of adjustable compression ratio. According to the feature of AWDT, this paper also deals with the strategies which are used to handle different sub-images in the procedure of quantification and coding of the wavelet coefficients. Through experiments, not only the algorithm in the paper can adapt to various images, but also the quality of recovered image is improved though compression ratio is higher and adjustable. When their compression ratios are near, the quality of subjective vision and PSNR of the algorithm are better than those of JPEG algorithm.展开更多
针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分...针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分解,获取模态分量。接着,将原始信号与这些模态分量分割为多个时间局部片段,并计算它们对应时间局部片段的相关熵值。然后,通过LWT算法处理弱相关分量,最后重构剩余分量以完成去噪过程。实验结果表明:在5 km的传感距离和10 m的空间分辨率的条件下,系统的信噪比达到了54.36 d B,同时均方根误差降低至0.091。展开更多
Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a ...Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.展开更多
基金Project(2015CB060200) supported by the National Basic Research Program of ChinaProject(41772313) supported by the National Natural Science Foundation of ChinaProject(2018zzts736) supported by the Independent Innovation Exploration Project of Central South University,China
文摘The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on the discrete wavelet transform(DWT),modified energy ratio(MER)and Akaike information criterion(AIC)pickers,has been proposed in this study.First,the DWT is used to decompose the signal into various components.Then,the joint application of MER and AIC pickers is carried out to pick the initial onset times of all selected components,where the minimum AIC position ahead of MER onset time is regarded as the initial onset time.Last,the average for initial onset times of all selected components is calculated as the final onset time of this signal.This improved joint method is tested and validated by the acoustic signals with different signal to noise ratios(SNRs)and waveforms.The results show that the improved joint method is not affected by the variations of SNR,and the onset times picked by this method are always accurate in different SNRs.Moreover,the onset times of all acoustic signals with spikes,heavy bodies and unclear takeoffs can be accurately picked by the improved joint method.Compared to some other methods including MER,AIC,DWT-MER and DWT-AIC,the improved joint method has better SNR stabilities and waveform adaptabilities.
文摘In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is significantly removed and coded with fuzzy vector quantization. The experimental result shows that the method can not only achieve high compression ratio but also remove noise dramatically.
文摘针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirical wavelet transform,ESEWT)相结合的齿轮振动信号降噪方法,即FBSE-ESEWT。首先,将采集到的齿轮振动信号利用FBSE技术获得其频谱,以替代传统的傅里叶谱,接着凭借能量尺度空间划分法对获取的FBSE频谱进行自适应分割和筛选,以精确定位有效频带的边界点。随后通过构建小波滤波器组得到信号分量并进行重构,以减小噪声和冗余信息干扰;然后,为捕捉到更全面的特征信息将处理后的信号进行广义S变换得到时频图,输入2D卷积神经网络进行故障诊断验证算法可行性。通过对Simulink仿真信号和实际采集信号进行实验,结果表明,相对于原始经验小波变换(EWT)、经验模态分解(EMD)等方法,FBSE-ESEWT具有更好的降噪效果,信噪比提高了13.96 dB,诊断准确率高达98.03%。
文摘Through research for image compression based on wavelet analysis in recent years, we put forward an adaptive wavelet decomposition strategy. Whether sub-images are to be decomposed or not are decided by their energy defined by certain criterion. Then we derive the adaptive wavelet decomposition tree (AWDT) and the way of adjustable compression ratio. According to the feature of AWDT, this paper also deals with the strategies which are used to handle different sub-images in the procedure of quantification and coding of the wavelet coefficients. Through experiments, not only the algorithm in the paper can adapt to various images, but also the quality of recovered image is improved though compression ratio is higher and adjustable. When their compression ratios are near, the quality of subjective vision and PSNR of the algorithm are better than those of JPEG algorithm.
文摘针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分解,获取模态分量。接着,将原始信号与这些模态分量分割为多个时间局部片段,并计算它们对应时间局部片段的相关熵值。然后,通过LWT算法处理弱相关分量,最后重构剩余分量以完成去噪过程。实验结果表明:在5 km的传感距离和10 m的空间分辨率的条件下,系统的信噪比达到了54.36 d B,同时均方根误差降低至0.091。
文摘Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.