针对红外船舶图像目标特征模糊、背景复杂以及小目标漏检等问题,基于YOLOv8提出一种面向海上交通中船舶目标的检测算法YOLO-IST(YOLO for infrared ship target)。在基线模型的骨干网络中引入C2f_DBB模块和CPCA注意力机制,通过增加特征...针对红外船舶图像目标特征模糊、背景复杂以及小目标漏检等问题,基于YOLOv8提出一种面向海上交通中船舶目标的检测算法YOLO-IST(YOLO for infrared ship target)。在基线模型的骨干网络中引入C2f_DBB模块和CPCA注意力机制,通过增加特征提取层来提升模型对目标的识别能力;利用C2f_Faster_EMA模块替换颈部网络中的C2f模块,以提升模型检测精度和速度;采用多重注意力的动态检测头Dynamic Head优化模型框架,增强模型对小船舶目标的检测效果。研究结果表明:YOLO-IST的召回率R_(ecall)、精确率P_(recision)、平均精度M_(ap@50)、平均精度M_(ap@50-95)和F_(1score)分别达到89.7%、90.5%、94.7%、66.6%、90.1%,较基线模型YOLOv8分别提升了4.5%、3.8%、4.4%、4.7%、4.2%。该模型的提出在海上智能交通中具有较广泛的应用前景。展开更多
近年来,卷积神经网络在合成孔径雷达(synthetic aperture radar,SAR)图像船舶检测中取得突出成就,但小目标检测方面仍然存在较大不足。对此,提出一种基于YOLO(you only look once)v5的改进检测网络,结合空间感知通道注意力、自注意力机...近年来,卷积神经网络在合成孔径雷达(synthetic aperture radar,SAR)图像船舶检测中取得突出成就,但小目标检测方面仍然存在较大不足。对此,提出一种基于YOLO(you only look once)v5的改进检测网络,结合空间感知通道注意力、自注意力机制和上下文特征融合策略,以提高小型船舶的检测性能。首先,通道注意力机制抑制了背景信息并强调目标特征,显著提高检测精度。其次,在YOLOv5的骨干网络和检测层中引入自注意力模块,以捕获全局信息,增强定位能力。最后,通过融合浅层和深层特征,补充特征提取中丢失的小目标信息,进一步提高检测精度。基于大规模SAR船舶监测数据集(large-scale SAR ship detection dataset version 1.0 LSSSDDv1.0)数据集的实验结果表明,改进后的网络的全类平均精度(mean average precision,mAP)0.5指标达78.9%,显著优于现有方法。展开更多
为保障桥区通航安全,提出一种视觉与船舶自动识别系统(Automatic Identification System,AIS)融合的船舶自动监测方法。基于YOLOv5(You Only Look Once version 5)目标检测算法和Canny算法提取船舶图像轮廓信息,构建桥区水域目标距离、...为保障桥区通航安全,提出一种视觉与船舶自动识别系统(Automatic Identification System,AIS)融合的船舶自动监测方法。基于YOLOv5(You Only Look Once version 5)目标检测算法和Canny算法提取船舶图像轮廓信息,构建桥区水域目标距离、方位和高度视觉测量模型与方法,实现船舶三维定位。利用融合视觉与AIS的船舶航行态势数据建立异常行为检测模型,自动识别、监测桥区水域危险船舶。试验结果表明:在单、多船的情况下视觉与AIS数据关联准确率分别达到98.45%、91.29%;能有效监测桥区船舶的运动状态。本研究可为保障船舶和桥梁的安全提供有效方法。展开更多
文摘近年来,卷积神经网络在合成孔径雷达(synthetic aperture radar,SAR)图像船舶检测中取得突出成就,但小目标检测方面仍然存在较大不足。对此,提出一种基于YOLO(you only look once)v5的改进检测网络,结合空间感知通道注意力、自注意力机制和上下文特征融合策略,以提高小型船舶的检测性能。首先,通道注意力机制抑制了背景信息并强调目标特征,显著提高检测精度。其次,在YOLOv5的骨干网络和检测层中引入自注意力模块,以捕获全局信息,增强定位能力。最后,通过融合浅层和深层特征,补充特征提取中丢失的小目标信息,进一步提高检测精度。基于大规模SAR船舶监测数据集(large-scale SAR ship detection dataset version 1.0 LSSSDDv1.0)数据集的实验结果表明,改进后的网络的全类平均精度(mean average precision,mAP)0.5指标达78.9%,显著优于现有方法。
文摘为保障桥区通航安全,提出一种视觉与船舶自动识别系统(Automatic Identification System,AIS)融合的船舶自动监测方法。基于YOLOv5(You Only Look Once version 5)目标检测算法和Canny算法提取船舶图像轮廓信息,构建桥区水域目标距离、方位和高度视觉测量模型与方法,实现船舶三维定位。利用融合视觉与AIS的船舶航行态势数据建立异常行为检测模型,自动识别、监测桥区水域危险船舶。试验结果表明:在单、多船的情况下视觉与AIS数据关联准确率分别达到98.45%、91.29%;能有效监测桥区船舶的运动状态。本研究可为保障船舶和桥梁的安全提供有效方法。