期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
Optimal two-channel switching false data injection attacks against remote state estimation of the unmanned aerial vehicle cyber-physical system
1
作者 Juhong Zheng Dawei Liu +1 位作者 Jinxing Hua Xin Ning 《Defence Technology(防务技术)》 2025年第5期319-332,共14页
A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ... A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section. 展开更多
关键词 Unmanned aerial vehicle(UAV) Cyber physical systems(CPS) K-L divergence Multi-sensor fusion kalman filter Stealthy switching false data injection(FDI) attackS
在线阅读 下载PDF
基于DACDiff的分布式电源调度控制系统FDIAs防御方法
2
作者 李元诚 孙鹤洋 +2 位作者 张桐 张贺方 杨立群 《信息网络安全》 北大核心 2025年第4期578-586,共9页
随着可再生能源的发展,分布式电源的应用规模持续扩大,其在高效能源利用和绿色环保方面的优势得到了广泛认可。然而,由于系统的分散性、复杂性和不确定性,使分布式电源调控更易受到虚假数据注入攻击(FDIAs)的安全威胁。FDIAs篡改实时量... 随着可再生能源的发展,分布式电源的应用规模持续扩大,其在高效能源利用和绿色环保方面的优势得到了广泛认可。然而,由于系统的分散性、复杂性和不确定性,使分布式电源调控更易受到虚假数据注入攻击(FDIAs)的安全威胁。FDIAs篡改实时量测数据干扰状态估计和调度决策,可能导致电力系统的不稳定、运行失误,甚至引发严重的电力事故。为确保新型电力系统的安全可靠运行,文章提出一种针对分布式电源调控FDIAs的DACDiff防御方法,该模型基于改进的条件扩散模型,采用DACformer作为去噪网络,采用双重注意力机制捕捉时间序列中的依赖性,通过上采样和多尺度设计更好保留数据特征,用高度逼真的生成数据替换受攻击影响的数据,以保证状态估计的连续性和调控指令的正确性。在电力数据集上的仿真实验结果表明,DACDiff模型在数据生成质量和防御能力方面表现优异,能够有效恢复受到FDIAs影响的分布式电源调控系统,提供了更优的安全性与稳定性。 展开更多
关键词 分布式电源调控 虚假数据注入攻击 主动防御 扩散模型 双重注意力机制
在线阅读 下载PDF
针对信息物理系统远程状态估计的隐蔽虚假数据注入攻击 被引量:1
3
作者 金增旺 刘茵 +3 位作者 刁靖东 王震 孙长银 刘志强 《自动化学报》 北大核心 2025年第2期356-365,共10页
从攻击者的角度探讨信息物理系统(Cyber-physical system,CPS)中隐蔽虚假数据注入(False data injection,FDI)攻击的最优策略.选取Kullback-Leibler(K-L)散度作为攻击隐蔽性的评价指标,设计攻击信号使得攻击保持隐蔽且最大程度地降低CP... 从攻击者的角度探讨信息物理系统(Cyber-physical system,CPS)中隐蔽虚假数据注入(False data injection,FDI)攻击的最优策略.选取Kullback-Leibler(K-L)散度作为攻击隐蔽性的评价指标,设计攻击信号使得攻击保持隐蔽且最大程度地降低CPS远程状态估计的性能.首先,利用残差的统计特征计算远程状态估计误差协方差,将FDI最优策略问题转化为二次约束优化问题.其次,在攻击隐蔽性的约束下,运用拉格朗日乘子法及半正定规划推导出最优策略.最后,通过仿真实验验证所提方法与现有方法相比在隐蔽性方面具有显著优势. 展开更多
关键词 信息物理系统 虚假数据注入攻击 Kullback-Leibler散度 远程状态估计
在线阅读 下载PDF
基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测 被引量:2
4
作者 席磊 王文卓 +3 位作者 白芳岩 陈洪军 彭典名 李宗泽 《电网技术》 北大核心 2025年第2期824-833,I0112-I0114,共13页
面向高维复杂的电力量测数据,现有攻击定位检测方法存在定位精度差的问题。为此该文提出一种基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测方法。所提方法引入最大信息系数对量测数据进行特征选择,能够非线... 面向高维复杂的电力量测数据,现有攻击定位检测方法存在定位精度差的问题。为此该文提出一种基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测方法。所提方法引入最大信息系数对量测数据进行特征选择,能够非线性地衡量数据特征之间的关联性,且公平地根据一个特征变量中包含另一个特征变量的信息量来去除冗余特征,有效解决虚假数据注入攻击定位检测方法普遍面临的量测数据高维冗余问题;同时提出一种具有正反馈信息传递作用的双层置信极端梯度提升树来对各节点状态进行分类,通过结合电网拓扑关系学习标签相关性,从而有选择性地利用前序标签有效预测信息,来减少后续分类器学习到的前序标签预测信息中包含的错误,最终实现对受攻击位置的精确定位。在IEEE-14、IEEE-57节点系统上进行大量仿真,算例结果验证了所提方法的有效性,且相较于其他方法具有更高的准确率、精度、召回率、F1值和AUC(area under curve)值。 展开更多
关键词 虚假数据注入攻击 最大信息系数 双层置信 极端梯度提升树 标签相关性
在线阅读 下载PDF
基于改进卷积神经网络的电网虚假数据注入攻击定位方法 被引量:1
5
作者 席磊 程琛 田习龙 《南方电网技术》 北大核心 2025年第1期74-84,共11页
虚假数据注入攻击通过篡改数据采集与监视控制系统采集的数据,进而破坏电力系统的稳定运行。传统虚假数据注入攻击检测方法无法对受攻击位置进行定位,亦或定位精度低。首先提出一种改进海鸥优化卷积神经网络的虚假数据注入攻击检测方法... 虚假数据注入攻击通过篡改数据采集与监视控制系统采集的数据,进而破坏电力系统的稳定运行。传统虚假数据注入攻击检测方法无法对受攻击位置进行定位,亦或定位精度低。首先提出一种改进海鸥优化卷积神经网络的虚假数据注入攻击检测方法,所提方法利用具有共享权值和局部连接特性的卷积神经网络来对高维历史量测数据进行高效的特征提取及分类。然后引入具备平衡全局搜索和局部搜索能力的改进海鸥优化算法进行超参数寻优,以获得虚假数据检测的高度匹配网络结构,进而对不良数据进行检测和定位。最后通过对IEEE-14和IEEE-57节点系统进行大量攻击检测实验,验证了所提方法的有效性,并与其他多种检测方法对比,验证了所提方法的具有更优的分类性能、更高的准确率、精度、召回率和F1值。 展开更多
关键词 虚假数据注入攻击 电力系统 卷积神经网络 海鸥优化 数据检测
在线阅读 下载PDF
基于自适应加权混合预测的电网虚假数据注入攻击检测
6
作者 束洪春 杨永银 +2 位作者 赵红芳 许畅 赵学专 《电网技术》 北大核心 2025年第3期1246-1256,I0095,共12页
电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先... 电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先使用肯德尔相关系数(Kendall's tau-b)量化日期类型的取值,引入加权灰色关联分析选取相似日,再建立基于最小二乘支持向量机(least squares support vector machine,LSSVM)的日前负荷预测模型。将预测负荷通过潮流计算求解的系统节点状态量与无迹卡尔曼滤波(unscented Kalman filter,UKF)动态状态估计得到的状态量进行自适应加权混合,最后基于混合预测值和静态估计值间的偏差变量提出了攻击检测指数(attack detection index,ADI),根据ADI的分布检测FDIAs。若检测到FDIAs,使用混合预测状态量对该时刻的量测量进行修正。使用IEEE-14和IEEE-39节点系统进行仿真,结果验证了所提方法的有效性与可行性。 展开更多
关键词 电力信息物理系统 加权灰色关联分析 无迹卡尔曼滤波 最小二乘支持向量机 虚假数据攻击 攻击检测指数
在线阅读 下载PDF
基于Focal Loss^(IM)-Transformer的电网虚假数据注入攻击检测
7
作者 席磊 和昀 +3 位作者 李子豪 曹利锋 李宗泽 石雨凡 《南方电网技术》 北大核心 2025年第6期26-38,共13页
虚假数据注入攻击对电力信息物理系统造成严重安全威胁。由于受到攻击样本与正常样本之间存在类别不平衡特性,导致机器学习检测方法偏向于多数类的预测,影响其对攻击的检测精度。为此,提出了基于Focal Loss^(IM)-Transformer的虚假数据... 虚假数据注入攻击对电力信息物理系统造成严重安全威胁。由于受到攻击样本与正常样本之间存在类别不平衡特性,导致机器学习检测方法偏向于多数类的预测,影响其对攻击的检测精度。为此,提出了基于Focal Loss^(IM)-Transformer的虚假数据注入攻击检测。Transformer利用其自注意力机制能够捕捉数据中的长期依赖性,进而识别不平衡的虚假数据注入攻击数据。Focal Loss^(IM)通过引入调制因子来更好地匹配虚假数据注入攻击样本的分布和特性,来增强检测方法对不平衡数据的识别能力,以提高检测方法对攻击的检测精度。通过在IEEE 14节点系统、IEEE 30节点系统和IEEE 57节点系统进行仿真,验证了所提方法的有效性。且相较于传统损失函数和其他检测方法,所提方法显示出更好的泛化能力和对少数类的识别能力,且辨识精度高、误报率低。 展开更多
关键词 电力信息物理系统 虚假数据注入攻击 不平衡数据 TRANSFORMER focal loss
在线阅读 下载PDF
基于深度机器学习的电网虚假数据入侵检测方法研究
8
作者 朱文 胡亚平 +2 位作者 聂涌泉 江伟 谢虎 《电测与仪表》 北大核心 2025年第6期126-133,共8页
综合能源为主体的新型电力系统运行过程中,容易被虚假数据入侵,且识别虚假数据入侵时易受数据噪声干扰。为了提升其电能质量与运行稳定性,提出了基于深度机器学习的电网虚假数据入侵检测方法。对新型电网数据实施去噪的预处理,利用相量... 综合能源为主体的新型电力系统运行过程中,容易被虚假数据入侵,且识别虚假数据入侵时易受数据噪声干扰。为了提升其电能质量与运行稳定性,提出了基于深度机器学习的电网虚假数据入侵检测方法。对新型电网数据实施去噪的预处理,利用相量测量单元(phasor measurement unit,PMU)预测出新型电力系统等综合能源的实时系统状态。通过在PMU中不断添加错误测量向量得出虚假数据注入攻击(false data injection attacks,FDIAs),判断电网是否已经被虚假信息攻击以及预测可能攻击的位置值。利用基于小波去噪的BP(back propagation)神经网络对预测结果训练,利用其中的输入层,隐含层以及输出层实时更新出实际值,与阈值比较得出偏差结果,即可检测出电网存在的虚假数据。实验结果表明,所提方法能够提前有效去除噪声,提高了电网虚假数据入侵检测精度高、且检测所需时间较短。 展开更多
关键词 深度机器学习 电网虚假数据 数据入侵检测 数据攻击模型 相量数据集中器
在线阅读 下载PDF
基于图注意力与多尺度并行融合卷积的虚假数据注入攻击定位检测
9
作者 席磊 陈采玉 +1 位作者 陈洪军 李宗泽 《高电压技术》 北大核心 2025年第4期1763-1772,共10页
虚假数据注入攻击严重威胁电力信息物理系统的安全,而传统攻击检测方法由于没有考虑量测数据间的拓扑并且特征提取能力差,无法精确识别攻击并定位受攻击节点。因此,该文提出一种基于图注意力与多尺度并行融合卷积模型的虚假数据注入攻... 虚假数据注入攻击严重威胁电力信息物理系统的安全,而传统攻击检测方法由于没有考虑量测数据间的拓扑并且特征提取能力差,无法精确识别攻击并定位受攻击节点。因此,该文提出一种基于图注意力与多尺度并行融合卷积模型的虚假数据注入攻击定位检测方法。该方法通过图注意力网络动态捕捉量测数据间的拓扑关系以提升检测方法的定位检测性能;采用结合注意力特征融合模块增强的并行卷积神经网络提取数据的多尺度特征进一步提高检测方法的学习能力和泛化能力,以实现高精度的定位检测。通过在IEEE-14节点测试系统和IEEE-57节点测试系统中进行评估研究,与现有的定位检测方法相比,该文所提方法具有更优的F1值,分别高达98.40%、95.29%。因此,该方法能够更好地对虚假数据注入攻击进行定位检测。 展开更多
关键词 虚假数据注入攻击 电力信息物理系统 图注意力网络 并行卷积 特征融合
在线阅读 下载PDF
虚假数据注入攻击下多智能体系统动态事件触发双向编队
10
作者 赵华荣 彭力 +2 位作者 谢林柏 杨杰龙 于洪年 《控制理论与应用》 北大核心 2025年第5期911-920,共10页
针对未知动力学模型的多输入多输出非线性离散时间多智能体系统的虚假数据注入攻击问题,本文设计了一种基于径向基函数神经网络的攻击识别策略,并针对其通讯受限问题,设计了一种动态事件触发控制策略.首先,利用伪偏导技术,在智能体的每... 针对未知动力学模型的多输入多输出非线性离散时间多智能体系统的虚假数据注入攻击问题,本文设计了一种基于径向基函数神经网络的攻击识别策略,并针对其通讯受限问题,设计了一种动态事件触发控制策略.首先,利用伪偏导技术,在智能体的每个工作点上建立了一种关于被控系统输入输出数据的紧格式动态线性化数据模型,并给出了该模型相应参数的估计法则.此外,利用符号图论分析了多智能体系统的双向编队控制问题,设计了一种组合测量误差方程,将双向编队控制问题转化为一致性控制问题,并设计了一种动态事件触发的无模型自适应双向编队控制算法.最后,给出了双向编队跟踪误差的收敛性证明,并通过仿真实验验证了该算法的有效性. 展开更多
关键词 双向编队 数据驱动控制 虚假数据注入攻击 动态事件触发
在线阅读 下载PDF
基于状态空间分解的电力系统虚假数据注入攻击检测与防御方法
11
作者 梁志宏 严彬元 +4 位作者 洪超 陶佳冶 杨祎巍 陈霖 李攀登 《南方电网技术》 北大核心 2025年第6期39-50,共12页
在可再生能源高渗透率的背景下,电力系统的负荷频率控制(load frequency control,LFC)面临虚假数据注入攻击(false data injection attack,FDIA)的安全威胁。现有检测方法难以有效区分控制输入攻击和测量数据攻击,影响系统的稳定性和安... 在可再生能源高渗透率的背景下,电力系统的负荷频率控制(load frequency control,LFC)面临虚假数据注入攻击(false data injection attack,FDIA)的安全威胁。现有检测方法难以有效区分控制输入攻击和测量数据攻击,影响系统的稳定性和安全性。为此建立了包含可再生能源及储能系统的LFC状态空间模型,并分析了FDIA对系统动态特性的影响。通过状态空间分解方法将攻击信号解耦为控制输入攻击和测量攻击,提高检测精度。基于滑模观测器设计攻击估计方法,实现对攻击信号的实时检测。进一步结合H∞控制理论,提出了抗攻击控制(attack-resilient control,ARC)策略,以增强系统在攻击环境下的鲁棒性。仿真算例表明:与传统方法相比攻击估计均方误差降低约30%,系统频率响应稳定性显著提升。结果表明,该方法能够有效检测FDIA并提高电力系统的安全性和抗干扰能力。 展开更多
关键词 负荷频率控制 虚假数据注入攻击 状态空间分解 滑模观测器 抗攻击控制
在线阅读 下载PDF
基于CNN-BiGRU-XGBoost的新型电力系统虚假数据注入攻击检测
12
作者 黄冬梅 杨旭 +3 位作者 胡安铎 卞正兰 孙园 孙锦中 《电网技术》 北大核心 2025年第5期2119-2127,共9页
虚假数据注入攻击(false data injection attack,FDIA)通过篡改电网量测信息,威胁电力系统安全。针对新型电力系统FDIA,研究了攻击原理,提出了基于CNN-BiGRU-XGBoost的检测方法。该方法使用卷积神经网络(convolutional neural networks,... 虚假数据注入攻击(false data injection attack,FDIA)通过篡改电网量测信息,威胁电力系统安全。针对新型电力系统FDIA,研究了攻击原理,提出了基于CNN-BiGRU-XGBoost的检测方法。该方法使用卷积神经网络(convolutional neural networks,CNN)与双向门控循环单元(bidirectional gated recurrent unit,BiGRU)提取时空特征,利用极限梯度提升树(eXtreme gradient boosting,XGBoost)进行分类,并引入多头注意力(multi-head attention)与Optuna方法优化模型性能。在IEEE-14节点与39节点系统中进行仿真实验,结果表明该文方法拥有比常见方法更好的精度与平衡性,验证了所提方法的有效性与鲁棒性。 展开更多
关键词 虚假数据注入攻击 新型电力系统 神经网络 时空特征
在线阅读 下载PDF
虚假数据注入攻击下受扰移动机器人系统弹性STMPC方法研究
13
作者 孙香香 马凯 +1 位作者 范昭 贺宁 《计算机工程与应用》 北大核心 2025年第9期304-314,共11页
针对受扰移动机器人系统自触发模型预测控制(self-triggered model predictive control,STMPC)在虚假数据注入(false data injection,FDI)攻击下的安全控制问题,提出了一种基于输入重构的弹性STMPC方法。结合自触发机制非周期采样特性和... 针对受扰移动机器人系统自触发模型预测控制(self-triggered model predictive control,STMPC)在虚假数据注入(false data injection,FDI)攻击下的安全控制问题,提出了一种基于输入重构的弹性STMPC方法。结合自触发机制非周期采样特性和FDI攻击模型,设计了一种基于关键数据的输入重构机制,以减弱FDI攻击对被控系统的影响。根据状态误差的最优控制问题,设计了重构参数的确定方法,以保证系统在应用重构控制输入后的控制性能。详细分析了所提出弹性STMPC算法的稳定性以及算法可行性。通过仿真和实验验证了所提出算法的有效性。 展开更多
关键词 虚假数据注入攻击 输入重构 模型预测控制 弹性控制 自触发机制
在线阅读 下载PDF
基于海马优化深层极限学习机的电力信息物理系统FDIA检测
14
作者 席磊 白芳岩 +3 位作者 王文卓 彭典名 陈洪军 李宗泽 《电力系统保护与控制》 北大核心 2025年第4期14-26,共13页
虚假数据注入攻击(false data injection attack,FDIA)严重威胁电力信息物理系统的安全稳定。针对已有FDIA检测算法无法精确定位受攻击位置的局限性,提出了一种基于精英余弦变异融合的海马优化算法优化深层极限学习机(deep extreme lear... 虚假数据注入攻击(false data injection attack,FDIA)严重威胁电力信息物理系统的安全稳定。针对已有FDIA检测算法无法精确定位受攻击位置的局限性,提出了一种基于精英余弦变异融合的海马优化算法优化深层极限学习机(deep extreme learning machine,DELM)的FDIA检测定位算法。首先,该算法将极限学习机和极限学习机自编码器相结合得到了具备强特征表达能力的DELM。然后,通过海马优化算法对DELM的偏置和输入权重进行择优,用于改善算法指标不稳定的问题。同时在捕食阶段引入精英余弦变异算法以提升海马的收敛速度与DELM的精度。最后,将系统量测数据作为输入特征,利用DELM得到节点状态标签,从而实现污染状态量的定位。通过在IEEE 14节点系统和IEEE 57节点系统进行大量仿真对比分析,验证了所提算法在准确率、精确率、召回率及F1值等检测定位性能方面均具有明显优势,能够实现FDIA的精确定位。 展开更多
关键词 电力信息物理系统 虚假数据注入攻击 海马优化算法 深层极限学习机
在线阅读 下载PDF
考虑FDIA的电力线通信赋能智慧园区时间同步方法
15
作者 张孙烜 薛佳朋 +4 位作者 刘昊东 周振宇 陈晓梅 吕磊 黄林 《中国电机工程学报》 北大核心 2025年第14期5443-5455,I0010,共14页
智慧园区新兴业务的信息采集及实时控制需要严格的时间同步作为前提,虚假数据注入攻击(false data injection attack,FDIA)对时间同步精度的影响不可忽视。如何通过电力线通信(power line communication,PLC)实现安全准确时间同步成为... 智慧园区新兴业务的信息采集及实时控制需要严格的时间同步作为前提,虚假数据注入攻击(false data injection attack,FDIA)对时间同步精度的影响不可忽视。如何通过电力线通信(power line communication,PLC)实现安全准确时间同步成为当前研究的重要问题。该文首先构建考虑FDIA的PLC赋能智慧园区时间同步网络,通过改进卡尔曼滤波修正时间同步误差;其次,以误差最小化为目标,建立站点时间同步问题;最后,提出基于改进深度Q网络的时间同步路由选择算法。所提算法能够根据FDIA概率动态学习时间同步路由选择策略,从而提高对未知状态的泛化能力。仿真验证表明,所提方法不仅能够显著提升FDIA检测的安全性能,同时可有效改善时间同步精度。 展开更多
关键词 智慧园区 时间同步 虚假数据注入攻击 电力线通信 改进深度Q网络 探索增强
在线阅读 下载PDF
基于GATv2模型的虚假数据注入攻击检测方法 被引量:1
16
作者 罗小元 耿艺帆 +1 位作者 吴莉艳 王新宇 《电气工程学报》 CSCD 北大核心 2024年第3期353-361,共9页
虚假数据注入攻击(False data injection attack,FDIA)能够躲避传统不良数据检测器,给智能电网的稳定运行带来了挑战。因此,提出了一种基于改进图注意力网络(Graph attention network v2,GATv2)模型的FDIA检测方法。首先,基于电力系统... 虚假数据注入攻击(False data injection attack,FDIA)能够躲避传统不良数据检测器,给智能电网的稳定运行带来了挑战。因此,提出了一种基于改进图注意力网络(Graph attention network v2,GATv2)模型的FDIA检测方法。首先,基于电力系统结构和FDIA的特性,构建模型所需数据集;然后,根据电力系统的拓扑信息和运行信息建立图数据;设计基于GATv2的检测模型对电网图数据的空间特征进行提取,进而检测注入的虚假数据攻击;最后,在IEEE 14节点和IEEE 118节点系统上验证了GATv2模型的有效性,且仿真结果表明GATv2模型检测性能优于其他模型,检测准确率达到98%以上,在不同攻击节点数和不同攻击强度情况中都具有较好的鲁棒性。 展开更多
关键词 智能电网 虚假数据注入攻击 深度学习 图注意力网络 不良数据检测
在线阅读 下载PDF
基于ARO-MKELM的微电网攻击检测 被引量:1
17
作者 吴忠强 张伟一 《计量学报》 CSCD 北大核心 2024年第10期1444-1452,共9页
智能电网的复杂性和开放性使其在信息交换时更易受到网络攻击的威胁。目前大多数检测方法只关注检测攻击的存在性,不能确定受到攻击的分布式电源的具体位置,导致无法快速将被攻击的分布式电源隔离,继而造成严重的损失。提出一种基于人... 智能电网的复杂性和开放性使其在信息交换时更易受到网络攻击的威胁。目前大多数检测方法只关注检测攻击的存在性,不能确定受到攻击的分布式电源的具体位置,导致无法快速将被攻击的分布式电源隔离,继而造成严重的损失。提出一种基于人工兔群优化算法优化多核极限学习机的交流微电网虚假数据注入攻击检测方法。在传统极限学习机中引入组合核函数以提升检测模型的学习能力和泛化能力,并采用具有强全局搜索能力的人工兔群优化算法优化多核极限学习机的核函数参数及正则化系数,进一步提升检测模型的检测精度。利用非训练样本内幅值为55和95的阶跃攻击信号进行仿真验证,检测准确率范围分别达到了(93.44~94.64)%和(98.11~99.23)%,与其他检测模型进行对比分析,验证了所提方法的优越性。 展开更多
关键词 电学计量 交流微电网 虚假数据注入 人工兔群优化算法 多核极限学习机
在线阅读 下载PDF
基于相关特征-多标签级联提升森林的电网虚假数据注入攻击定位检测 被引量:3
18
作者 席磊 田习龙 +1 位作者 余涛 程琛 《南方电网技术》 CSCD 北大核心 2024年第5期39-50,61,共13页
虚假数据注入攻击严重威胁了电网安全稳定运行。由于电力量测数据维度高、特征复杂,传统攻击定位检测方法存在定位精度不足的问题。为此,提出一种基于相关特征-多标签级联提升森林的电网虚假数据注入攻击定位检测方法来精确定位电网受... 虚假数据注入攻击严重威胁了电网安全稳定运行。由于电力量测数据维度高、特征复杂,传统攻击定位检测方法存在定位精度不足的问题。为此,提出一种基于相关特征-多标签级联提升森林的电网虚假数据注入攻击定位检测方法来精确定位电网受攻击的位置。所提方法通过融入极端梯度提升算法来增强多标签级联森林对复杂电力量测数据的拟合能力,进而识别系统各节点状态量的异常;引入“相关特征”算法来对原始电力量测数据中的高信息性特征进行提取,提升多标签级联森林的泛化能力,以获得更精确的定位检测。在IEEE-14和IEEE-57节点系统中进行仿真测试,验证了所提方法的有效性,且与其他方法相比,所提方法具有更优的准确率、查准率、灵敏度和F1分数。 展开更多
关键词 虚假数据注入攻击 相关特征 多标签级联森林 极端梯度提升
在线阅读 下载PDF
基于深度学习的电力系统虚假数据注入攻击检测综述 被引量:6
19
作者 李卓 谢耀滨 +1 位作者 吴茜琼 张有为 《电力系统保护与控制》 EI CSCD 北大核心 2024年第19期175-187,共13页
虚假数据注入攻击(false data injection attack,FDIA)是针对电力系统的一种常见网络攻击,可以通过终端链路或设备注入异常数据,绕过不良数据检测机制,进而引发电力系统的异常运行,造成严重的经济损失。近年来深度学习技术在FDIA检测方... 虚假数据注入攻击(false data injection attack,FDIA)是针对电力系统的一种常见网络攻击,可以通过终端链路或设备注入异常数据,绕过不良数据检测机制,进而引发电力系统的异常运行,造成严重的经济损失。近年来深度学习技术在FDIA检测方面取得诸多进展,通过大量的数据训练和强大的模型学习能力,能够自动学习和提取攻击数据特征,相对于传统方法具有更高的准确率和鲁棒性。总结了近年来基于深度学习的电力系统FDIA检测研究进展,涵盖卷积神经网络、循环神经网络、图神经网络、生成对抗网络和深度强化学习等典型深度学习模型。首先分析各类深度学习模型的FDIA检测原理,并介绍相关技术方法。然后从鲁棒性、评估指标和可扩展性等方面对上述技术进行对比分析,总结其应用范围及存在不足。最后探讨了当前研究中存在的挑战和未来的研究发展方向。 展开更多
关键词 虚假数据注入 攻击检测 深度学习 电力系统安全
在线阅读 下载PDF
虚假数据注入式攻击下无人水面船舶自适应神经输出反馈轨迹跟踪控制 被引量:1
20
作者 祝贵兵 吴晨 马勇 《自动化学报》 EI CAS CSCD 北大核心 2024年第7期1472-1484,共13页
本文主要研究网络环境下无人水面船舶(Unmanned surface vessels,USVs)遭受虚假数据注入式(False-data-injection,FDI)攻击的跟踪控制问题.其中,内部和外部不确定以及输入饱和约束等实际因素均考虑在设计中.在控制设计过程中,为避免将... 本文主要研究网络环境下无人水面船舶(Unmanned surface vessels,USVs)遭受虚假数据注入式(False-data-injection,FDI)攻击的跟踪控制问题.其中,内部和外部不确定以及输入饱和约束等实际因素均考虑在设计中.在控制设计过程中,为避免将船舶速度的攻击信号引入闭环系统,采用分类重构思想,构造一种新的神经网络(Neural network,NN)状态观测器,同时重构船舶速度和攻击信号.进一步,在backstepping设计框架下,利用重构的攻击信号补偿USVs运动学通道因虚假数据注入式攻击引起的非匹配不确定项.在动力学设计通道中,利用自适应神经技术和单参数学习法,重构由内部和外部不确定组成的复合不确定部分,进而提出自适应神经输出反馈控制方案.理论分析表明,即便在FDI攻击、内外不确定以及执行器饱和约束的情况下,所提控制方案仍能迫使USVs跟踪给定的参考轨迹.同时,仿真和比较结果证实了所提控制方案的有效性和优越性. 展开更多
关键词 无人水面船舶 虚假数据注入式攻击 跟踪控制 单参数学习法 自适应神经控制 输出反馈
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部