In order to diagnose the working status of each module on sensor node and make sure the wireless sensor networks (WSN) work properly, the components of sensor node and their working characteristics are studied. An o...In order to diagnose the working status of each module on sensor node and make sure the wireless sensor networks (WSN) work properly, the components of sensor node and their working characteristics are studied. An on-line fault self-diagnosis method for sensor node is proposed. First, a flexible fault sensing circuit is designed as a state detection module on sensor node. Second, a self- diagnosis algorithm is proposed based on the hardware design and the failure analysis on sensor node. Finally, in order to ensure the WSN reliability, the voltage changes of each module working statuses can be observed using the state detection module and the faulty module will be found out timely. The experimental results show that this self-diagnosis method is suitable to sensor nodes in WSN.展开更多
Maximum likelihood(ML) noncoherent block detection techniques are investigated for block-coded MPSK modulation in cooperative decode-and-forward relay systems over slow fading channels.A decision-directed iterative Vi...Maximum likelihood(ML) noncoherent block detection techniques are investigated for block-coded MPSK modulation in cooperative decode-and-forward relay systems over slow fading channels.A decision-directed iterative Viterbi algorithm(IVA) is derived for a suboptimal ML noncoherent detection.Simulation results show that the IVA can approach the error performances of the exhaustive detection method but at a lower complexity.展开更多
An adaptive dispersion estimation(ADE)is proposed to compensate dispersion and estimate the transfer function of the fiber channel with GerchbergSaxton(G-S)algorithm,using the stochastic gradient descent(SGD)method in...An adaptive dispersion estimation(ADE)is proposed to compensate dispersion and estimate the transfer function of the fiber channel with GerchbergSaxton(G-S)algorithm,using the stochastic gradient descent(SGD)method in the intensity-modulation and direct-detection(IM-DD)system,improving the tolerance of the algorithm to chromatic dispersion(CD).In order to address the divergence arising from the perturbation in the amplitude of the received signal caused by the filtering effect of the non-ideal channels,a channel-compensation equalizer(CCE)derived from the back-to-back(BTB)scenario is employed at the transmitter to make the amplitude of the received signal depicting the CD effect more accurately.The simulation results demonstrate the essentiality of CCE for the convergence and performance improvement of the G-S algorithm.Results show that it supports 112Gb/s four-level pulse amplitude modulation(PAM4)over 100 km standard single-mode fiber(SSMF)transmission under the 7%forward error correction(FEC)threshold of 3.8E-3.Besides,ADE improves the tolerance to wavelength drift from about 4 nm to 42 nm,and there is a better tolerance for fiber distance perturbation,indicating the G-S algorithm and its derived algorithms with the ADE scheme exhibit superior robustness to the perturbation in the system.展开更多
基金Supported by the Basic Research Foundation of Beijing Institute of Technology(200705422009)
文摘In order to diagnose the working status of each module on sensor node and make sure the wireless sensor networks (WSN) work properly, the components of sensor node and their working characteristics are studied. An on-line fault self-diagnosis method for sensor node is proposed. First, a flexible fault sensing circuit is designed as a state detection module on sensor node. Second, a self- diagnosis algorithm is proposed based on the hardware design and the failure analysis on sensor node. Finally, in order to ensure the WSN reliability, the voltage changes of each module working statuses can be observed using the state detection module and the faulty module will be found out timely. The experimental results show that this self-diagnosis method is suitable to sensor nodes in WSN.
基金supported by the National Natural Science Foundation of China(61302095,61401165)the Natural Science Foundation of Fujian Province of China(2014J01243,2014J05076,2015J01262)the Huaqiao University Science Foundation(13Y0384)
文摘Maximum likelihood(ML) noncoherent block detection techniques are investigated for block-coded MPSK modulation in cooperative decode-and-forward relay systems over slow fading channels.A decision-directed iterative Viterbi algorithm(IVA) is derived for a suboptimal ML noncoherent detection.Simulation results show that the IVA can approach the error performances of the exhaustive detection method but at a lower complexity.
基金funded by the National Natural Science Foundation of China NSFC,U22A2005 and 62201033theYoung Elite Scientists Sponsorship Program of CIC 2021QNRC001。
文摘An adaptive dispersion estimation(ADE)is proposed to compensate dispersion and estimate the transfer function of the fiber channel with GerchbergSaxton(G-S)algorithm,using the stochastic gradient descent(SGD)method in the intensity-modulation and direct-detection(IM-DD)system,improving the tolerance of the algorithm to chromatic dispersion(CD).In order to address the divergence arising from the perturbation in the amplitude of the received signal caused by the filtering effect of the non-ideal channels,a channel-compensation equalizer(CCE)derived from the back-to-back(BTB)scenario is employed at the transmitter to make the amplitude of the received signal depicting the CD effect more accurately.The simulation results demonstrate the essentiality of CCE for the convergence and performance improvement of the G-S algorithm.Results show that it supports 112Gb/s four-level pulse amplitude modulation(PAM4)over 100 km standard single-mode fiber(SSMF)transmission under the 7%forward error correction(FEC)threshold of 3.8E-3.Besides,ADE improves the tolerance to wavelength drift from about 4 nm to 42 nm,and there is a better tolerance for fiber distance perturbation,indicating the G-S algorithm and its derived algorithms with the ADE scheme exhibit superior robustness to the perturbation in the system.