期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Turbo Message Passing Based Burst Interference Cancellation for Data Detection in Massive MIMO-OFDM Systems
1
作者 Wenjun Jiang Zhihao Ou +1 位作者 Xiaojun Yuan Li Wang 《China Communications》 SCIE CSCD 2024年第2期143-154,共12页
This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst inte... This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound. 展开更多
关键词 burst interference cancellation data detection massive multiple-input multiple-output(MIMO) message passing orthogonal frequency division multiplexing(OFDM)
在线阅读 下载PDF
ADS-B Anomaly Data Detection Model Based on Deep Learning and Difference of Gaussian Approach 被引量:6
2
作者 WANG Ershen SONG Yuanshang +5 位作者 XU Song GUO Jing HONG Chen QU Pingping PANG Tao ZHANG Jiantong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期550-561,共12页
Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for position... Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for positioning of general aviation aircraft.Aim to acquire the accurate position information of aircraft and detect anomaly data,the ADS-B anomaly data detection model based on deep learning and difference of Gaussian(DoG)approach is proposed.First,according to the characteristic of ADS-B data,the ADS-B position data are transformed into the coordinate system.And the origin of the coordinate system is set up as the take-off point.Then,based on the kinematic principle,the ADS-B anomaly data can be removed.Moreover,the details of the ADS-B position data can be got by the DoG approach.Finally,the long short-term memory(LSTM)neural network is used to optimize the recurrent neural network(RNN)with severe gradient reduction for processing ADS-B data.The position data of ADS-B are reconstructed by the sequence to sequence(seq2seq)model which is composed of LSTM neural network,and the reconstruction error is used to detect the anomalous data.Based on the real flight data of general aviation aircraft,the simulation results show that the anomaly data can be detected effectively by the proposed method of reconstructing ADS-B data with the seq2seq model,and its running time is reduced.Compared with the RNN,the accuracy of anomaly detection is increased by 2.7%.The performance of the proposed model is better than that of the traditional anomaly detection models. 展开更多
关键词 general aviation aircraft automatic dependent surveillance-broadcast(ADS-B) anomaly data detection deep learning difference of Gaussian(DoG) long short-term memory(LSTM)
在线阅读 下载PDF
An Intelligent Early Warning Method of Press-Assembly Quality Based on Outlier Data Detection and Linear Regression
3
作者 XUE Shanliang LI Chen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期597-606,共10页
Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to d... Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to deal with the relationship between assembly quality and press-assembly process,then the mathematical model of displacement-force in press-assembly process is established and a qualified press-assembly force range is defined for assembly quality control.To preprocess the raw dataset of displacement-force in the press-assembly process,an improved local outlier factor based on area density and P weight(LAOPW)is designed to eliminate the outliers which will result in inaccuracy of the mathematical model.A weighted distance based on information entropy is used to measure distance,and the reachable distance is replaced with P weight.Experiments show that the detection efficiency of the algorithm is improved by 5.6 ms compared with the traditional local outlier factor(LOF)algorithm,and the detection accuracy is improved by about 2%compared with the local outlier factor based on area density(LAOF)algorithm.The application of LAOPW algorithm and the linear regression model shows that it can effectively carry out intelligent early warning of press-assembly quality of high precision servo mechanism. 展开更多
关键词 quality early warning outlier data detection linear regression local outlier factor based on area density and P weight(LAOPW) information entropy P weight
在线阅读 下载PDF
Symbiotic Radio Systems:Detection and Performance Analysis
4
作者 CUI Ziqi WANG Gongpu +2 位作者 WANG Zhigang AI Bo XIAO Huahua 《ZTE Communications》 2022年第3期93-98,共6页
Symbiotic radio(SR)is an emerging green technology for the Internet of Things(IoT).One key challenge of the SR systems is to design efficient and low-complexity detectors,which is the focus of this paper.We first driv... Symbiotic radio(SR)is an emerging green technology for the Internet of Things(IoT).One key challenge of the SR systems is to design efficient and low-complexity detectors,which is the focus of this paper.We first drive the mathematical expression of the optimal maximum-likelihood(ML)detector,and then propose a suboptimal iterative detector with low complexity.Finally,we show through numerical results that our proposed detector can obtain near-optimal bit error rate(BER)performance at a low computational cost. 展开更多
关键词 bit error rate data detection Internet of Things symbiotic radio system wireless communication
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部