期刊文献+
共找到5,286篇文章
< 1 2 250 >
每页显示 20 50 100
Salt and Pepper Noise Filter Based on GA-BP Algorithm Noise Detector 被引量:2
1
作者 宋寅卯 李晓娟 《光电工程》 CAS CSCD 北大核心 2011年第2期59-64,共6页
基于噪声检测的中值滤波器已广泛用于消除图像中的椒盐噪声,然而在高噪声密度情况下,对噪声像素的定位不准确很容易造成图像边缘的模糊。本文提出了一种基于GA-BP的椒盐噪声滤波算法,克服了这一缺陷。算法首先用遗传算法优化的BP网... 基于噪声检测的中值滤波器已广泛用于消除图像中的椒盐噪声,然而在高噪声密度情况下,对噪声像素的定位不准确很容易造成图像边缘的模糊。本文提出了一种基于GA-BP的椒盐噪声滤波算法,克服了这一缺陷。算法首先用遗传算法优化的BP网络对图像中的噪声像素定位,然后引入保边函数和PRP算法求目标函数的极值进而实现图像的去噪处理。实验结果表明,该算法比传统滤波算法效果有明显改善,且具有良好的泛化性、鲁棒性和自适应性。 展开更多
关键词 GA-BP算法 椒盐噪声 噪声检测 保边函数 PRP算法
在线阅读 下载PDF
Density-based trajectory outlier detection algorithm 被引量:10
2
作者 Zhipeng Liu Dechang Pi Jinfeng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期335-340,共6页
With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the pr... With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the problem of anomaly detection is a hot topic.Based on the development of anomalous trajectory detection of moving objects,this paper introduces the classical trajectory outlier detection(TRAOD) algorithm,and then proposes a density-based trajectory outlier detection(DBTOD) algorithm,which compensates the disadvantages of the TRAOD algorithm that it is unable to detect anomalous defects when the trajectory is local and dense.The results of employing the proposed algorithm to Elk1993 and Deer1995 datasets are also presented,which show the effectiveness of the algorithm. 展开更多
关键词 density-based algorithm trajectory outlier detection(TRAOD) partition-and-detect framework Hausdorff distance
在线阅读 下载PDF
INTELLIGENT DECISION ALGORITHM FOR FAULT DETECTION AND ITS APPLICATION
3
作者 Wu Jianjun Zhang Yulin Chen Qizhi(Department of Aerospace Technology, NUDT,Changsha, 410073 ) 《国防科技大学学报》 EI CAS CSCD 北大核心 1995年第3期33-40,共8页
INTELLIGENTDECISIONALGORITHMFORFAULTDETECTIONANDITSAPPLICATIONWuJianjun;ZhangYulin;ChenQizhi(DepartmentofAer... INTELLIGENTDECISIONALGORITHMFORFAULTDETECTIONANDITSAPPLICATIONWuJianjun;ZhangYulin;ChenQizhi(DepartmentofAerospaceTechnology,... 展开更多
关键词 故障检测 智能决策 算法
在线阅读 下载PDF
Method for electromagnetic detection satellites scheduling based on genetic algorithm with alterable penalty coefficient 被引量:1
4
作者 Jun Li Hao Chen +2 位作者 Zhinong Zhong Ning Jing Jiangjiang Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期822-832,共11页
The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The... The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm. 展开更多
关键词 electromagnetic detection satellite (EDS) scheduling genetic algorithm (GA) constraint handling penalty function method alterable penalty coefficient.
在线阅读 下载PDF
基于轻量级改进RT-DETR边缘部署算法的绝缘子缺陷检测 被引量:3
5
作者 姜香菊 王瑞彤 马彦鸿 《电工技术学报》 北大核心 2025年第3期842-854,共13页
随着新型电力系统的不断发展建设,输电线路绝缘子状态智能化巡检成为必然趋势。为方便“云-边-端协同架构”进行边缘部署,该文提出一种轻量级RT-DETR目标检测算法。首先,采用RT-DETR作为基线算法降低优化难度,提高鲁棒性;其次,选择轻量... 随着新型电力系统的不断发展建设,输电线路绝缘子状态智能化巡检成为必然趋势。为方便“云-边-端协同架构”进行边缘部署,该文提出一种轻量级RT-DETR目标检测算法。首先,采用RT-DETR作为基线算法降低优化难度,提高鲁棒性;其次,选择轻量级EMO作为算法特征提取主干,充分学习绝缘子目标的长距离特征交互及缺陷小目标的局部特征交互,并提出基于轻量级注意力的尺度内特征交互模块和轻量级跨尺度特征融合模块设计轻量级高效混合编码器;再次,在轻量级高效混合编码器中引入定位信息补充分支、使用DIoU损失函数结合迁移学习训练技巧,缓解轻量化造成的算法精度下降问题;最后,构建多天气条件绝缘子数据集进行训练验证。实验结果表明,相较于基线算法,所提算法检测精度达到97.2%,只损失0.7个百分点,而参数量和计算量分别下降67.8%和71.2%,检测速度提升2.5倍,满足多天气条件下的输电线路绝缘子状态巡检准确率及边缘部署轻量化要求。 展开更多
关键词 绝缘子缺陷检测 RT-DETR算法 轻量化 边缘部署 目标检测算法
在线阅读 下载PDF
基于门控注意网络模型的天然气管道泄漏检测新方法 被引量:2
6
作者 董宏丽 孙桐 +2 位作者 王闯 杨帆 商柔 《天然气工业》 北大核心 2025年第1期25-36,共12页
准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模... 准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模型的初始超参数选择通常是随机的,这也可能会导致识别性能不稳定。为了提升天然气管道泄漏检测的准确性,提出一种基于麻雀搜索算法的门控注意网络模型(Sparrow Search Algorithm-based Gate Attention Network, SGAN)。首先,为了提取有效且具有鲁棒性的数据特征,采用带交叉熵函数的麻雀搜索算法对门控循环单元的初始超参数进行全局搜索;然后,设计了一种异常注意力机制,通过对数据特征进行加权来放大正常和泄漏数据之间的区分差异;最后,将所提算法应用于天然气管道的泄漏检测。研究结果表明:(1) SGAN模型能够实现模型超参数的自适应优化,并加快了模型的收敛速度,使模型性能更加稳定;(2) SGAN模型通过对正常与泄漏特征进行加权处理,显著提升了数据特征的区分效果;(3) SGAN模型的学习表示能力和泛化能力得到了明显加强,以此提高了对数据的分类性能;(4) SGAN模型能够显著提高天然气管道泄漏检测的准确率和召回率,可减少误报率和漏报率,并且其性能明显优于常规分类算法。结论认为,SGAN模型通过自适应优化和异常注意力机制结合,能精准识别泄漏特征,并快速响应天然气管道中的泄漏情况,有效提升了检测的准确性和可靠性,显著降低了安全事故风险,为天然气管道泄漏检测提供了一种高效、智能的解决新方案。 展开更多
关键词 天然气管道 泄漏检测 麻雀搜索算法 门控循环单元 异常注意力机制 自适应优化 智能
在线阅读 下载PDF
基于改进YOLOv5的苹果轻量化检测算法
7
作者 王红君 刘紫宾 +1 位作者 赵辉 岳有军 《农机化研究》 北大核心 2025年第7期65-71,共7页
为解决苹果采摘机器人检测算法存在的网络结构复杂和参数量大的问题,提出一种基于YOLOv5的轻量化苹果检测算法。首先,将YOLOv5主干网络替换为MobileNetv3,为降低网络的计算复杂度,将深度可分离卷积引入到特征融合网络中;然后,在网络的... 为解决苹果采摘机器人检测算法存在的网络结构复杂和参数量大的问题,提出一种基于YOLOv5的轻量化苹果检测算法。首先,将YOLOv5主干网络替换为MobileNetv3,为降低网络的计算复杂度,将深度可分离卷积引入到特征融合网络中;然后,在网络的关键位置引入注意力机制,以提高算法对苹果不同特征的提取能力;最后,使用CIoU作为改进网络的损失函数,以提升模型的检测效果。试验结果表明:改进模型的检测精度为91.5%,相较于SSD、Faster R-CNN,检测精度分别提高了2.35%、3.07%,相比于YOLOv5s检测精度提高了8.20%,且模型大小约为YOLOv5s的1/3。 展开更多
关键词 苹果 检测算法 YOLOv5 轻量化 注意力机制
在线阅读 下载PDF
YOLO-LDD:轻量级无人机检测算法 被引量:1
8
作者 邵剑飞 蔡世军 刘杰 《吉林大学学报(理学版)》 北大核心 2025年第3期867-877,共11页
针对在无人机目标检测中现有检测算法模型过大、速度较慢、复杂度过高等问题,提出一种基于YOLOv5n的改进型轻量级无人机检测算法YOLO-LDD.首先,在YOLOv5n基础上引入多样化分支模块DBB和C3模块融合重构为C3_DBB模块,增强单个卷积的表征能... 针对在无人机目标检测中现有检测算法模型过大、速度较慢、复杂度过高等问题,提出一种基于YOLOv5n的改进型轻量级无人机检测算法YOLO-LDD.首先,在YOLOv5n基础上引入多样化分支模块DBB和C3模块融合重构为C3_DBB模块,增强单个卷积的表征能力;其次,在颈部网络中引入重参数化结构卷积RepConv,提升检测速度;最后,通过层自适应幅度剪枝(LAMP)方法压缩模型,减少参数数量.实验结果表明,该算法可在保持良好检测性能的同时,降低计算和存储需求,并提高模型的效率和推理速度,平均精度达96.7%,参数量较YOLOv5n压缩73%,运算量减少60%,检测速度提升至原来的1.6倍. 展开更多
关键词 无人机 目标检测 YOLOv5n算法 轻量级 深度学习
在线阅读 下载PDF
基于峰值检测的便携式钢筘测量仪研发
9
作者 徐帅 杨晓芳 +2 位作者 毛雷 孙百胜 宋子俊 《毛纺科技》 北大核心 2025年第1期97-103,共7页
针对纺织生产现场随时进行机上快速测量的使用需求,研发了一款采用振动传感器和位移传感器的便携式钢筘筘号测量仪。首先,在分析振动信号的基础上,通过统计振动信号波峰数量获得筘齿数。其次,在统计波峰过程中,引入并优化无参数的自动... 针对纺织生产现场随时进行机上快速测量的使用需求,研发了一款采用振动传感器和位移传感器的便携式钢筘筘号测量仪。首先,在分析振动信号的基础上,通过统计振动信号波峰数量获得筘齿数。其次,在统计波峰过程中,引入并优化无参数的自动多尺度峰值检测算法,降低其时空复杂度,实现筘齿的准确计数。最后,设计便携式钢筘测量仪硬件、软件架构,硬件上采用高性能STM32微控制器,能较好采集数据和运行算法;软件上增添时间和位移的双重条件检查,增加测量可靠性。实验结果表明:基于优化峰值检测算法的便携式钢筘测量仪,能够较好地测量工厂常用钢筘的筘号,并具有操作方便、无需设置阈值等优点。 展开更多
关键词 钢筘筘号 峰值检测 算法优化 钢筘检测 信号处理 纺织仪器
在线阅读 下载PDF
基于近红外光谱和LOF的蛋清粉非定向掺杂鉴别研究
10
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 叶文杰 金永涛 王巧华 马美湖 《光谱学与光谱分析》 北大核心 2025年第6期1768-1775,共8页
蛋清粉的掺杂鉴别技术对保障蛋粉质量安全具有重要意义,然而目前传统的生物分子检测方法存在操作复杂且耗时长的问题,且针对蛋清粉的掺杂鉴别模型仍主要为定向鉴别模型,其检测范围有限,无法有效覆盖所有可能的掺杂物质,亟需开发一种快... 蛋清粉的掺杂鉴别技术对保障蛋粉质量安全具有重要意义,然而目前传统的生物分子检测方法存在操作复杂且耗时长的问题,且针对蛋清粉的掺杂鉴别模型仍主要为定向鉴别模型,其检测范围有限,无法有效覆盖所有可能的掺杂物质,亟需开发一种快速、准确、泛用的蛋清粉掺杂鉴别方法。该研究引入近红外光谱检测技术,构建了LOF非定向鉴别模型。该模型是一种无监督单分类模型,且在原模型基础上加入MSC预处理和CARS波长筛选处理,提高模型提取光谱特征的能力,减少噪声干扰,降低模型计算量。试验结果表明,LOF非定向鉴别模型针对掺杂蛋清粉的检测率可达到93.6%,其准确率、精确率、召回率、F1分数分别达到了93.6%、95.5%、93.6%、94.5%,针对掺杂浓度超过15%的蛋清粉,可达到100%的检测率,两种测试集的总准确率(AAR)均为93.6%,平均检测时间(AATS)可达到0.0011 s;与其他非定向算法相比具有更高的精度,且相比于传统的定向模型泛用性更强,更适合应用于市面上掺杂种类繁杂的蛋清粉掺杂鉴别。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的科学基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 局部离群因子检测算法 非定向检测
在线阅读 下载PDF
基于优化的U-net网络掘进工作面煤岩识别方法研究
11
作者 栾恒杰 杨玉晴 +4 位作者 刘建康 蒋宇静 刘建荣 马德良 张孙豪 《采矿与岩层控制工程学报》 北大核心 2025年第1期94-108,共15页
为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3... 为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3种网络模型对数据集进行训练,并对训练结果进行对比分析。分析结果表明:在训练次数达到100次时,3种网络模型准确率分别为89.25%, 93.52%及94.55%,改进U-net网络模型准确率相较改进前提高1.03%;在煤岩识别方面, U-net网络模型比FCN网络模型取得了更高的准确率,在测试环节中也表现出了更好的性能;在预测环节中,对煤岩边缘部分的识别做到了更为精准的处理。该方法可为煤岩识别的精准度的提高提供参考。 展开更多
关键词 煤岩识别 深度学习 U-net网络 CANNY边缘检测算法
在线阅读 下载PDF
改进型YOLOv3的PCB缺陷检测研究
12
作者 张健滔 黄允 +1 位作者 汪鹏宇 瞿栋 《机械设计与制造》 北大核心 2025年第7期172-177,共6页
为了准确快速进行PCB缺陷检测,文中针对常见的PCB缺陷铜面残渣(简称RE-CU)和铜面异物(简称FB-CU),利用YOLOv3模型进行缺陷识别实验。实验结果显示:YOLOv3模型在PCB缺陷识别中有较好的检测效果,在阈值为0.5时,有缺陷图片(简称NG图片)的... 为了准确快速进行PCB缺陷检测,文中针对常见的PCB缺陷铜面残渣(简称RE-CU)和铜面异物(简称FB-CU),利用YOLOv3模型进行缺陷识别实验。实验结果显示:YOLOv3模型在PCB缺陷识别中有较好的检测效果,在阈值为0.5时,有缺陷图片(简称NG图片)的漏检率低于15%,无缺陷图片(简称OK图片)的误检率只有5%左右。在深入分析检测的结果后,发现对于小缺陷的识别效果较差,于是增加了一个感受野更小的检测头,构建了具有四个检测头的网络结构。利用改进型的YOLOv3算法进行实验,结果表明:改进后的YOLOv3算法具有更好的检测性能,在阈值为0.5时,OK图片的误检率较改进前降低为0.25%,并且在阈值为0.7时更是达到了0%,NG图片的漏检率较改进前也有所降低。 展开更多
关键词 深度学习 PCB 缺陷检测 YOLOv3算法 目标检测
在线阅读 下载PDF
基于矩阵画像和Louvain社区发现算法的关键核心技术识别研究
13
作者 万校基 赖静 +2 位作者 牟莹禧 朱志国 张丽萍 《情报学报》 北大核心 2025年第7期903-914,共12页
针对现有关键核心技术识别方法较少考虑时间因素和较难解读识别结果等问题,本文提出一种基于矩阵画像(matrix profile,MP)和Louvain社区发现算法的关键核心技术识别方法。该方法基于IPC(international patent classification)小类权重... 针对现有关键核心技术识别方法较少考虑时间因素和较难解读识别结果等问题,本文提出一种基于矩阵画像(matrix profile,MP)和Louvain社区发现算法的关键核心技术识别方法。该方法基于IPC(international patent classification)小类权重和词频分析法识别目标领域热点技术主题,结合高频IPC小类时间序列和MP算法构建技术关联网络,借助Louvain算法和社会网络分析法识别目标领域初始关键核心技术主题。基于特征筛选关键核心技术主题,并通过对技术关联子网络、原始专利数据、相关政策文件和期刊文献的深层次解读来识别目标领域关键核心技术。通过对incoPat专利数据库中2014—2023年物流领域的授权专利进行数据处理和挖掘发现,本文方法能有效识别物流领域关键核心技术,不仅有助于推动行业技术突破和创新,亦可提升国家在全球产业链和价值链中的地位。 展开更多
关键词 关键核心技术 矩阵画像 社区发现算法 技术关联网络 结构洞
在线阅读 下载PDF
HD-YOLO:复杂场景下安全帽佩戴检测算法 被引量:1
14
作者 邱云飞 腰瑞琳 +1 位作者 金海波 张嘉宁 《安全与环境学报》 北大核心 2025年第1期165-174,共10页
针对目标密集、有遮挡的复杂施工场景下安全帽佩戴检测存在漏检、误检的问题,提出了一种基于YOLOv8的HD-YOLO安全帽佩戴检测算法。首先,设计了GRC-C2f结构,使用多分支结构捕获多尺度特征,兼顾训练阶段的特征提取能力和推理阶段的计算效... 针对目标密集、有遮挡的复杂施工场景下安全帽佩戴检测存在漏检、误检的问题,提出了一种基于YOLOv8的HD-YOLO安全帽佩戴检测算法。首先,设计了GRC-C2f结构,使用多分支结构捕获多尺度特征,兼顾训练阶段的特征提取能力和推理阶段的计算效率。其次,设计了DSASF颈部结构,结合动态上采样和多尺度特征融合,精准识别和定位图像中的小目标,以提高检测性能。然后,引入Focal Modulation模块替换原有的快速空间金字塔池化(Spatial Pyramid Pooling-Fast,SPPF)结构模块,捕捉图像中的长距离依赖和上下文信息,聚焦于复杂背景中的目标。最后,采用空间增强注意力模块(Spatially Enhanced Attention Module,SEAM)解决小目标遮挡问题。试验结果表明,HD-YOLO算法在同一数据集上平均精度均值为81.8%,相比原始YOLOv8算法提高了5.0百分点。设计的HD-YOLO算法有效提高了复杂场景中佩戴安全帽的检测精度。 展开更多
关键词 安全社会工程 安全帽检测 YOLOv8算法 GRC-C2f模块 DSASF颈部结构 Focal Modulation模块 空间增强注意力模块
在线阅读 下载PDF
感兴趣区域YOLO_BFROI的扶梯乘客安全检测算法
15
作者 侯颖 胡鑫 +3 位作者 赵瑞瑞 张楠 徐艳红 马莉 《计算机工程与应用》 北大核心 2025年第6期84-95,共12页
自动扶梯智能化监控是预防乘客事故发生的重要手段,然而扶梯运行环境较复杂,背景干扰严重,远距离小目标乘客的检测容易造成漏检和误检问题,提出一种基于感兴趣区域改进YOLOv8的轻量化自动扶梯乘客摔倒检测算法。改进算法设计了基于感兴... 自动扶梯智能化监控是预防乘客事故发生的重要手段,然而扶梯运行环境较复杂,背景干扰严重,远距离小目标乘客的检测容易造成漏检和误检问题,提出一种基于感兴趣区域改进YOLOv8的轻量化自动扶梯乘客摔倒检测算法。改进算法设计了基于感兴趣区域的BiFormer_ROI注意力机制模块,构造SPD-Conv和BiFormer_ROI的小目标检测模块组改进YOLOv8骨干网络,屏蔽非扶梯背景区域的复杂环境干扰,有效提高小目标检测率。考虑实际应用需要采用GhostSlimPAFPN轻量化结构优化Neck网络,在保持检测精度的同时有效减少模型参数量。采用具有目标尺寸自适应惩罚因子的PIoU v2损失函数改进Head网络,从而实现更快的收敛和更高的检测精度。在自建扶梯乘客摔倒数据集上,改进算法乘客摔倒平均检测精度达到94.2%,检测帧率为87.7 FPS,检测性能显著提高,能有效减少漏检和误检问题,且具有良好的实时性,可以更好地保障乘客安全乘梯。 展开更多
关键词 深度学习 自动扶梯 摔倒检测 YOLOv8算法 感兴趣区域 轻量化
在线阅读 下载PDF
融合多尺度特征和多重注意力的棉田杂草检测研究
16
作者 帖军 龙吕佳 +2 位作者 郑禄 刘娇 巴桑顿珠 《中国农机化学报》 北大核心 2025年第10期138-145,共8页
针对现有棉田杂草检测方法识别杂草类别少、精度低的问题,提出一种融合多尺度特征和多重注意力的棉田杂草检测方法。首先,在骨干网络中引入高效多尺度注意力模块提升模型的特征提取能力,同时不增加模型参数量与计算量;其次,在头部网络... 针对现有棉田杂草检测方法识别杂草类别少、精度低的问题,提出一种融合多尺度特征和多重注意力的棉田杂草检测方法。首先,在骨干网络中引入高效多尺度注意力模块提升模型的特征提取能力,同时不增加模型参数量与计算量;其次,在头部网络添加渐进特征金字塔,进一步增强特征融合效果;最后,通过改进框回归损失函数提升模型的收敛速度和定位精度。在CottonWeedDet12数据集上进行试验,结果表明,该方法检测平均精度均值mAP达到94.6%,F1分数为0.754。相比于原始模型,mAP提高2.62%,召回率提高3.16%,同时检测时间为65.359 ms,满足实时检测的要求。该方法能够很好地解决自然环境下棉田杂草的精确检测问题,为棉田智能除草设备的研究提供参考。 展开更多
关键词 棉田 杂草检测 YOLOv8算法 注意力机制 特征金字塔
在线阅读 下载PDF
基于自适应MCMC的鲁棒因子图优化组合导航算法
17
作者 陈熙源 崔天昊 钟雨露 《仪器仪表学报》 北大核心 2025年第2期81-91,共11页
在城市峡谷环境中,GNSS多径效应与非视距现象严重,会极大影响GNSS的定位精度,进而影响INS/GNSS组合导航系统的定位效果。然而传统的INS/GNSS组合导航系统无法确定在城市峡谷环境中快速变化的GNSS量测噪声,为保证组合导航系统的抗差性能... 在城市峡谷环境中,GNSS多径效应与非视距现象严重,会极大影响GNSS的定位精度,进而影响INS/GNSS组合导航系统的定位效果。然而传统的INS/GNSS组合导航系统无法确定在城市峡谷环境中快速变化的GNSS量测噪声,为保证组合导航系统的抗差性能和估计精度,针对传统因子图优化算法中量测噪声协方差矩阵不准确带来状态估计精度下降的问题,提出了一种基于自适应MCMC的鲁棒因子图优化组合导航算法。首先,基于先验和后验两阶段将自适应MCMC引入因子图优化框架,在先验中通过MCMC算法将对后验概率采样转化为对先验概率和似然概率的乘积进行采样,并引入自适应策略提高采样效率,得到后验概率对应的样本集。在后验中,通过KL散度最小化近似后验和真实后验,从而精确估计GNSS时变量测噪声协方差;其次,引入新息χ^(2)检测算法,通过构建假设检验统计量和量测异常边界值来检测和剔除粗差。所提方法在减小粗差干扰的同时能有效估计GNSS时变量测噪声。由INS/GNSS组合导航的仿真和现场实验表明,所提方法相比普通因子图优化算法和基于变分贝叶斯的鲁棒自适应因子图优化算法在水平定位均方根误差上分别减小了20.4%、11.9%和71.6%、25.2%,具有较好的鲁棒性。 展开更多
关键词 组合导航 因子图优化 自适应MCMC 新息χ^(2)检测算法
在线阅读 下载PDF
融合视觉标定与斑点检测算法的PCB钻孔定位方法
18
作者 杨铎 张书晨 +2 位作者 陈昕 易鹏飞 吴宏伟 《应用光学》 北大核心 2025年第1期178-185,共8页
为了解决目前PCB(printed circuit board)钻孔定位方法中多次标定的问题,提出了一种新的PCB钻孔定位方法,融合了视觉标定和斑点检测算法,能适应动态变化的拍摄环境,提高了PCB钻孔定位时的鲁棒性。这一方法基于张正友标定法,通过多视角... 为了解决目前PCB(printed circuit board)钻孔定位方法中多次标定的问题,提出了一种新的PCB钻孔定位方法,融合了视觉标定和斑点检测算法,能适应动态变化的拍摄环境,提高了PCB钻孔定位时的鲁棒性。这一方法基于张正友标定法,通过多视角拍摄标定板以获取相机参数和畸变系数。之后,利用这些参数校正PCB图像,并运用多尺度空间斑点检测算法提取PCB图像中的钻孔点中心坐标。最终,借助相机参数和PCB钻孔点的图像坐标,成功地还原了PCB钻孔点的三维空间坐标,实现了高效的钻孔点定位。通过实验得出,本文方法的定位精度可在0.1 mm上下浮动,平均定位误差可以控制在0.05 mm~0.07 mm。结果表明,本文方法具备一定的操作灵活性和鲁棒性,符合PCB机械钻孔加工需求。 展开更多
关键词 PCB 视觉标定 斑点检测算法 三维坐标 多点定位
在线阅读 下载PDF
基于集成学习的恶意代码动态检测方法
19
作者 刘强 王坚 +1 位作者 王亚男 王珊 《信息网络安全》 北大核心 2025年第1期159-172,共14页
在当前网络环境中,不断升级的恶意代码变种为网络安全带来了巨大挑战。现有的人工智能模型虽然在恶意代码检测方面成效明显,但仍存在两个不可忽视的缺点。一是泛化能力较差,虽然在训练数据上表现优异,但受概念漂移现象的影响,在实际测... 在当前网络环境中,不断升级的恶意代码变种为网络安全带来了巨大挑战。现有的人工智能模型虽然在恶意代码检测方面成效明显,但仍存在两个不可忽视的缺点。一是泛化能力较差,虽然在训练数据上表现优异,但受概念漂移现象的影响,在实际测试中性能不够理想;二是鲁棒性不佳,容易受到对抗样本的攻击。为解决上述问题,文章提出一种基于集成学习的恶意代码动态检测方法,根据API序列的不同特征,分别构建统计特征分析模块、语义特征分析模块和结构特征分析模块,各模块针对性地进行恶意代码检测,最后融合各模块分析结果,得出最终检测结论。在Speakeasy数据集上的实验结果表明,与现有研究方法相比,该方法各项性能指标具有明显优势,同时具有较好的鲁棒性,能够有效抵抗针对API序列的两种对抗攻击。 展开更多
关键词 恶意代码检测 n-gram算法 Transformer编码器 图神经网络 对抗性攻击
在线阅读 下载PDF
雾天遥感小目标检测的双子网算法
20
作者 宋存利 杨佳俊 张雪松 《计算机工程与应用》 北大核心 2025年第9期128-138,共11页
针对雾天场景下遥感小目标检测的漏检错检问题,提出了基于双子网多任务协同训练的GFFA-YOLO算法。利用门控融合的GFFA网络去雾来恢复目标信息。设计SD-SCConv和RepNCSPELAN-SD-SCConv模块,该模块通过融合空间到深度层,同时利用自校正机... 针对雾天场景下遥感小目标检测的漏检错检问题,提出了基于双子网多任务协同训练的GFFA-YOLO算法。利用门控融合的GFFA网络去雾来恢复目标信息。设计SD-SCConv和RepNCSPELAN-SD-SCConv模块,该模块通过融合空间到深度层,同时利用自校正机制来提高特征提取能力。增加了选择注意力LSK模块来增强多尺度特征融合。实验结果表明,所提算法在不同雾浓度的NWPU VHR-10数据集上的mAP分别达到85.6%和74.3%,在雾处理后的DOTA v1.0数据集上mAP达到82.1%,相较主流算法表现出更高的检测能力。 展开更多
关键词 YOLO 小目标检测 去雾算法 注意力机制
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部