期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
面向高分辨率遥感影像建筑物提取的SD-BASNet网络
1
作者 朱娟娟 黄亮 朱莎莎 《自然资源遥感》 北大核心 2025年第5期122-130,共9页
针对网络模型参数量大、下采样过程丢失影像建筑物细节信息的问题,受轻量级网络的启发,设计了一种融入深度可分离残差块和空洞卷积的建筑物提取网络(SD-BASNet)。首先,在深度监督编码器预测模块中设计了一个深度可分离残差块,将深度可... 针对网络模型参数量大、下采样过程丢失影像建筑物细节信息的问题,受轻量级网络的启发,设计了一种融入深度可分离残差块和空洞卷积的建筑物提取网络(SD-BASNet)。首先,在深度监督编码器预测模块中设计了一个深度可分离残差块,将深度可分离卷积引入主干网络ResNet中,避免卷积核过大,减少网络的参数量;其次,为防止网络轻量化带来的精度下降,将空洞卷积融入后处理优化模块的编码层,增大特征图的感受野,从而捕捉更广泛的上下文信息,提高建筑物特征提取的准确性。在WHU建筑物数据集上进行实验,在不同尺度建筑物提取中均表现较好,其平均交并比和平均像素精度分别为92.25%和96.59%,其召回率、精确率和F1指标分别达到96.50%,93.79%和92.61%。与PSPNet,SegNet,DeepLabV3,SE-UNet,UNet++等语义分割网络相比,SD-BASNet网络提取精度得到了显著提升,且提取的建筑物完整度更好;与基础网络BASNet相比,SD-BASNet网络的参数量与运行时间也有所减少,证实了该文提出的SD-BASNet网络的有效性。 展开更多
关键词 建筑物提取 高分辨率遥感影像 BASNet网络 深度可分离残差块 空洞卷积
在线阅读 下载PDF
基于多重机制优化YOLOv8的复杂环境下安全帽检测方法 被引量:7
2
作者 肖振久 严肃 曲海成 《计算机工程与应用》 CSCD 北大核心 2024年第21期172-182,共11页
为了解决建筑工地、隧道、煤矿等施工场景中现有安全帽检测算法对于小目标、密集目标以及复杂环境下的检测精度低的问题,提出了一种基于多重机制的安全帽检测方法。以YOLOv8n为基础将Backbone部分的C2f模块加入可扩张残差(DWR)注意力模... 为了解决建筑工地、隧道、煤矿等施工场景中现有安全帽检测算法对于小目标、密集目标以及复杂环境下的检测精度低的问题,提出了一种基于多重机制的安全帽检测方法。以YOLOv8n为基础将Backbone部分的C2f模块加入可扩张残差(DWR)注意力模块,使得网络能够更灵活地适应不同尺度的特征,以而更准确地识别图像中的物体;采用可变形卷积AKConv模块取代主干部分中的原始Conv,为卷积神经网络带来了显著的性能提升,从而实现更高效的特征提取。此外引用了大型可分离核注意力LSKA模块与SPPF结构相结合,大大增强了模型核心的融合能力。在Safety helmet数据集的实验结果表明,改进后的算法相较于原模型,mAP@0.5指标上提升了10.5个百分点,在mAP@0.5-0.95指标上提升了3.7个百分点,能有效提高复杂场景下的安全帽佩戴检测精度。 展开更多
关键词 安全帽 YOLOv8n DWR模块 AKConv模块 LSKA模块
在线阅读 下载PDF
基于改进ResNet50的钨矿石双能X射线图像分选方法 被引量:3
3
作者 刘志锋 曾灵锋 +2 位作者 彭芳伟 魏振华 张寰宇 《现代电子技术》 北大核心 2024年第13期87-92,共6页
文中提出一种基于深度扩张可分离卷积和注意力机制的残差网络模型(DWAtt-ResNet),通过实验对比表明,该模型在钨矿石双能X射线图像数据集上准确率、F1分数、AUC值和AP值均优于ConvNeXt、DenseNet121和EfficientNet_b4等主流的图像分类模... 文中提出一种基于深度扩张可分离卷积和注意力机制的残差网络模型(DWAtt-ResNet),通过实验对比表明,该模型在钨矿石双能X射线图像数据集上准确率、F1分数、AUC值和AP值均优于ConvNeXt、DenseNet121和EfficientNet_b4等主流的图像分类模型。通过消融实验表明,该模型准确率达到87.4%,计算量为2.7GFLOPs,参数量为16.95M,相比ResNet50准确率提高3%,计算量降低1.42 GFLOPs,参数量降低6.56M,准确率提升的同时,效率大幅提升,更适合工业生产的矿石快速分拣需求。 展开更多
关键词 钨矿石 双能X射线 图像分类 ResNet50 深度扩张可分离卷积 注意力机制
在线阅读 下载PDF
基于扩张卷积和Transformer的视听融合语音分离方法 被引量:2
4
作者 刘宏清 谢奇洲 +1 位作者 赵宇 周翊 《信号处理》 CSCD 北大核心 2024年第7期1208-1217,共10页
为了提高语音分离的效果,除了利用混合的语音信号,还可以借助视觉信号作为辅助信息。这种融合了视觉与音频信号的多模态建模方式,已被证实可以有效地提高语音分离的性能,为语音分离任务提供了新的可能性。为了更好地捕捉视觉与音频特征... 为了提高语音分离的效果,除了利用混合的语音信号,还可以借助视觉信号作为辅助信息。这种融合了视觉与音频信号的多模态建模方式,已被证实可以有效地提高语音分离的性能,为语音分离任务提供了新的可能性。为了更好地捕捉视觉与音频特征中的长期依赖关系,并强化网络对输入上下文信息的理解,本文提出了一种基于一维扩张卷积与Transformer的时域视听融合语音分离模型。将基于频域的传统视听融合语音分离方法应用到时域中,避免了时频变换带来的信息损失和相位重构问题。所提网络架构包含四个模块:一个视觉特征提取网络,用于从视频帧中提取唇部嵌入特征;一个音频编码器,用于将混合语音转换为特征表示;一个多模态分离网络,主要由音频子网络、视频子网络,以及Transformer网络组成,用于利用视觉和音频特征进行语音分离;以及一个音频解码器,用于将分离后的特征还原为干净的语音。本文使用LRS2数据集生成的包含两个说话者混合语音的数据集。实验结果表明,所提出的网络在尺度不变信噪比改进(Scale-Invariant Signal-to-Noise Ratio Improvement,SISNRi)与信号失真比改进(Signal-to-Distortion Ratio Improvement,SDRi)这两种指标上分别达到14.0 dB与14.3 dB,较纯音频分离模型和普适的视听融合分离模型有明显的性能提升。 展开更多
关键词 语音分离 视听融合 多头自注意力机制 扩张卷积
在线阅读 下载PDF
复杂场景下自适应注意力机制融合实时语义分割
5
作者 陈丹 刘乐 +2 位作者 王晨昊 白熙茹 王子晨 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3334-3342,共9页
实现高准确度和低计算负担是卷积神经网络(CNN)实时语义分割面临的严峻挑战。针对复杂城市街道场景目标种类众多、光照变化大等特点,该文设计了一种高效的实时语义分割自适应注意力机制融合网络(AAFNet)分别提取图像空间细节和语义信息... 实现高准确度和低计算负担是卷积神经网络(CNN)实时语义分割面临的严峻挑战。针对复杂城市街道场景目标种类众多、光照变化大等特点,该文设计了一种高效的实时语义分割自适应注意力机制融合网络(AAFNet)分别提取图像空间细节和语义信息,再经过特征融合网络(FFN)获得准确语义图像。AAFNet采用扩展的深度可分离卷积(DDW)可增大语义特征提取感受野,提出自适应平均池化(Avp)和自适应最大池化(Amp)构成自适应注意力机制融合模块(AAFM),可细化目标边缘分割效果并降低小目标的漏分率。最后在复杂城市街道场景Cityscapes和CamVid数据集上分别进行了语义分割实验,所设计的AAFNet以32帧/s(Cityscapes)和52帧/s(CamVid)的推理速度获得73.0%和69.8%的平均分割精度(mIoU),且与扩展的空间注意力网络(DSANet)、多尺度上下文融合网络(MSCFNet)以及轻量级双边非对称残差网络(LBARNet)相比,AAFNet平均分割精度最高。 展开更多
关键词 卷积神经网络 复杂城市街道场景 扩展的深度可分离卷积 自适应注意力机制融合 分割精度
在线阅读 下载PDF
基于特征增强的高分辨率人体姿态估计网络 被引量:3
6
作者 谢唯嘉 易见兵 +1 位作者 曹锋 李俊 《电子测量技术》 北大核心 2024年第2期131-141,共11页
在轻量级卷积神经网络进行高分辨率人体姿态估计时存在提取特征不充分,针对该问题,提出了一种基于特征增强的高分辨率人体姿态估计网络。首先利用空洞卷积补全操作提取图像特征,以避免特征信息丢失且保持模型参数基本不变;接着利用池化... 在轻量级卷积神经网络进行高分辨率人体姿态估计时存在提取特征不充分,针对该问题,提出了一种基于特征增强的高分辨率人体姿态估计网络。首先利用空洞卷积补全操作提取图像特征,以避免特征信息丢失且保持模型参数基本不变;接着利用池化增强模块进行卷积提取特征的选择,以保留重要特征且减轻传统池化模块对提取特征造成的破坏;最后利用加强通道信息交互的深度可分离卷积模块进行特征提取,以保持该模块的参数量较少且能够提高其特征提取能力。在COCO2017数据集进行性能测试,本文算法和DiteHRNet30算法的AR值分别为77.9%和77.2%;在MPII数据集进行性能测试,本文算法和DiteHRNet30算法的PCKh值分别为32.6%和31.7%。实验结果表明,本文算法在人体姿态估计精度和算法复杂度之间能够达到较好的平衡。 展开更多
关键词 人体姿态估计 轻量级网络 高分辨率 空洞卷积 池化 深度可分离卷积
在线阅读 下载PDF
基于并行附加特征提取网络的SSD地面小目标检测模型 被引量:16
7
作者 李宝奇 贺昱曜 +1 位作者 强伟 何灵蛟 《电子学报》 EI CAS CSCD 北大核心 2020年第1期84-91,共8页
针对SSD原始附加特征提取网络(Original Additional Feature Extraction Network,OAFEN)中stride操作造成图像小目标信息丢失和串联结构产生的多尺度特征之间冗余度较大的问题,提出了一种计算量小、感受野大的深度可分离空洞卷积(Depthw... 针对SSD原始附加特征提取网络(Original Additional Feature Extraction Network,OAFEN)中stride操作造成图像小目标信息丢失和串联结构产生的多尺度特征之间冗余度较大的问题,提出了一种计算量小、感受野大的深度可分离空洞卷积(Depthwise Separable Dilated Convolution,DSDC),并利用DSDC设计了一个包含三个独立子网络的并行附加特征提取网络(Parallel Additional Feature Extraction Network,PAFEN).PAFEN上路用两个DSDC提取尺寸为19*19和3*3的特征图;中路用一个DSDC提取尺寸为10*10的特征图;下路用两个DSDC提取尺寸为5*5和1*1的特征图.实验结果表明,在SSD框架内,PAFEN在mAP和检测时间等方面均优于OAFEN,适用于地面小目标的检测任务. 展开更多
关键词 目标检测 SSD 深度可分离卷积 空洞卷积 深度可分离空洞卷积 并行附加特征提取网络
在线阅读 下载PDF
基于改进的DeepLabv3+图像语义分割算法研究 被引量:8
8
作者 赵为平 陈雨 +2 位作者 项松 刘远强 王超越 《系统仿真学报》 CAS CSCD 北大核心 2023年第11期2333-2344,共12页
目前主流图像语义分割网络往往存在误分割、分割不连续和模型复杂度高的问题,不能灵活高效地部署于实际场景中。针对这一现象,通过综合考虑网络的参数量、预测时间和准确度,设计出一种优化DeepLabv3+模型的图像语义分割网络。骨干网络... 目前主流图像语义分割网络往往存在误分割、分割不连续和模型复杂度高的问题,不能灵活高效地部署于实际场景中。针对这一现象,通过综合考虑网络的参数量、预测时间和准确度,设计出一种优化DeepLabv3+模型的图像语义分割网络。骨干网络改用轻量级EfficientNetv2网络提取特征,提高参数利用率;在空洞空间金字塔池化模块中使用混合条带池化模块代替全局平均池化,引入深度可分离膨胀卷积,减少参数量和提高学习多尺度信息的能力;使用注意力机制增强模型表征力,提取骨干网络多条浅层特征,丰富图像的几何细节信息。实验表明,本文算法可达到mIoU为81.19%,参数量为55.51×106,有效优化了分割精度和模型复杂度,同时也提高了模型泛化性。 展开更多
关键词 DeepLabv3+ 图像语义分割 空洞空间金字塔池化 注意力机制 深度可分离膨胀卷积
在线阅读 下载PDF
基于多尺度深度可分离卷积的低照度图像增强算法 被引量:16
9
作者 陈清江 顾媛 《计算机工程与科学》 CSCD 北大核心 2023年第10期1830-1837,共8页
为解决低照度图像颜色失真、对比度低以及现有增强算法存在的细节丢失严重、参数过多等问题,提出基于多尺度深度可分离卷积的低照度图像增强算法。首先,设计多尺度混合空洞卷积模块,在扩大感受野的同时解决网格效应;其次,设计多尺度特... 为解决低照度图像颜色失真、对比度低以及现有增强算法存在的细节丢失严重、参数过多等问题,提出基于多尺度深度可分离卷积的低照度图像增强算法。首先,设计多尺度混合空洞卷积模块,在扩大感受野的同时解决网格效应;其次,设计多尺度特征提取模块,提取不同尺度的特征信息;最后,对不同尺寸的特征图使用2种模块,将低层空间信息与高层语义信息充分融合,获得最终输出。用深度可分离卷积代替标准卷积可大大减少网络参数量与计算量。实验结果表明,所提算法能有效地提高图像的亮度和对比度,减少模型参数量,且图像纹理细节及色彩恢复较好。 展开更多
关键词 低照度图像增强 深度可分离卷积 空洞卷积 多尺度 网格效应
在线阅读 下载PDF
无人驾驶车辆基于语义分割方法障碍物检测 被引量:4
10
作者 邹斌 王思信 +1 位作者 颜莉蓉 刘裕 《广西大学学报(自然科学版)》 CAS 北大核心 2019年第6期1667-1674,共8页
障碍物检测是无人驾驶车辆环境感知重要的组成部分,语义分割技术能够对障碍物进行像素级检测。为满足无人车系统的实时性要求和对障碍物检测精度要求,提出了一种轻量级语义分割模型。该模型构建了特征提取块,通过跳跃层结构将底层级特... 障碍物检测是无人驾驶车辆环境感知重要的组成部分,语义分割技术能够对障碍物进行像素级检测。为满足无人车系统的实时性要求和对障碍物检测精度要求,提出了一种轻量级语义分割模型。该模型构建了特征提取块,通过跳跃层结构将底层级特征与高层级特征相融合,用于提取更加细化的图像特征信息。运用深度可分离卷积代替标准卷积操作,减少了模型参数量和计算量。利用不同膨胀率的膨胀卷积以获取多尺度目标信息,在上采样时融合不同尺度的特征信息,使得语义信息更加丰富。试验结果表明:提出的轻量级语义分割模型在Cityscapes数据集和ApolloScape数据集上取得了较好的障碍物检测结果,同时也满足无人车的实时性要求。 展开更多
关键词 障碍物检测 深度学习 语义分割 膨胀卷积 深度可分离卷积
在线阅读 下载PDF
基于注意力机制和上下文信息的目标检测算法 被引量:4
11
作者 刘辉 张琳玉 +1 位作者 王复港 何如瑾 《计算机应用》 CSCD 北大核心 2023年第5期1557-1564,共8页
针对目标检测过程中存在的小目标漏检问题,提出一种基于注意力机制和多尺度上下文信息的改进YOLOv5目标检测算法。首先,在特征提取结构中加入多尺度空洞可分离卷积模块(MDSCM)以提取多尺度特征信息,在增大感受野的同时避免小目标信息的... 针对目标检测过程中存在的小目标漏检问题,提出一种基于注意力机制和多尺度上下文信息的改进YOLOv5目标检测算法。首先,在特征提取结构中加入多尺度空洞可分离卷积模块(MDSCM)以提取多尺度特征信息,在增大感受野的同时避免小目标信息的丢失;其次,在主干网络中添加注意力机制,并在通道信息中嵌入位置感知信息,进一步增强算法的特征表达能力;最后,使用Soft-NMS(Soft-Non-Maximum Suppression)代替YOLOv5使用的非极大值抑制(NMS),降低检测算法的漏检率。实验结果表明,改进算法在PASCAL VOC数据集、DOTA航拍数据集和DIOR光学遥感数据集上的检测精度分别达到了82.80%、71.74%和77.11%,相较于YOLOv5,分别提高了3.70、1.49和2.48个百分点;而且它对图像中小目标的检测效果更好。因此,改进的YOLOv5可以更好地应用到小目标检测场景中。 展开更多
关键词 目标检测 深度可分离卷积 空洞卷积 注意力机制 非极大值抑制
在线阅读 下载PDF
基于压缩激励残差分组扩张卷积和密集线性门控Unet歌声分离方法 被引量:1
12
作者 张天骐 熊天 +1 位作者 吴超 闻斌 《应用科学学报》 CAS CSCD 北大核心 2023年第5期815-830,共16页
针对Unet频域歌声分离网络模型对语音时序信息的捕获困难以及底层特征利用率不高的问题,设计了一种相比于基线Unet网络参数量更小且歌声分离效果更好的卷积神经网络。首先设计了一种残差分组扩张卷积结合压缩激励模块,并将其引入到编码... 针对Unet频域歌声分离网络模型对语音时序信息的捕获困难以及底层特征利用率不高的问题,设计了一种相比于基线Unet网络参数量更小且歌声分离效果更好的卷积神经网络。首先设计了一种残差分组扩张卷积结合压缩激励模块,并将其引入到编码和解码阶段,该模块在参数量减少和增大网络感受野的同时自适应学习不同通道的重要特征,不但增强了有用特征,而且还抑制了无用特征。其次在传输层将线性门控单元采用密集相加连接来增强网络在特征传递过程中对时序特征的获取,并且使用扩张卷积来代替普通卷积以扩大网络的感受野。最后使用注意力门控机制来代替基线Unet中的跳跃连接以加强网络对底层特征的利用。在Ccmixter和MUSDB18数据集中进行实验,与基线网络相比,歌声分离的性能指标都有提升,并且其参数量大约只有基线网络的1/5。 展开更多
关键词 歌声分离 分组扩张卷积 门控线性单元 注意力门控
在线阅读 下载PDF
深度卷积神经网络支持下的遥感影像飞机检测 被引量:9
13
作者 谢梦 刘伟 +2 位作者 杨梦圆 柴琪 吉莉 《测绘通报》 CSCD 北大核心 2019年第6期19-23,共5页
针对YOLOv3算法对小目标检测较差及出现较多漏检的问题,本文提出了一种优化的YOLOv3算法.首先使用K-means算法计算出与数据集相适用的锚框;其次将扩张卷积引入到YOLOv3网络,用来增强网络高层的感受野,改善小目标的检测效果;然后使用深... 针对YOLOv3算法对小目标检测较差及出现较多漏检的问题,本文提出了一种优化的YOLOv3算法.首先使用K-means算法计算出与数据集相适用的锚框;其次将扩张卷积引入到YOLOv3网络,用来增强网络高层的感受野,改善小目标的检测效果;然后使用深度可分离卷积取代YOLOv3网络残差模块中的普通卷积,可减少计算量,从而得到一种新型卷积神经网络结构;最后在数据集上进行对比试验.结果表明,优化的YOLOv3算法能够检测出更多目标,降低漏检率,相比于YOLOv3算法,其召回率提高11.86%,F1-score提高2.99%. 展开更多
关键词 YOLOv3 遥感影像 目标检测 扩张卷积 深度可分离卷积
在线阅读 下载PDF
基于级联可分离空洞残差U-Net的肝脏肿瘤分割 被引量:8
14
作者 于群 张建新 +1 位作者 魏小鹏 张强 《应用科学学报》 CAS CSCD 北大核心 2021年第3期378-386,共9页
计算机辅助肝脏肿瘤分割可减少医生工作量,提高手术成功率,因而具有重要的临床诊疗价值。为获得精确的肝脏肿瘤自动分割结果,该文结合医学影像分割领域近年新兴的U-Net模块提出了基于级联可分离空洞残差U-Net(cascaded separable and di... 计算机辅助肝脏肿瘤分割可减少医生工作量,提高手术成功率,因而具有重要的临床诊疗价值。为获得精确的肝脏肿瘤自动分割结果,该文结合医学影像分割领域近年新兴的U-Net模块提出了基于级联可分离空洞残差U-Net(cascaded separable and dilated residual U-Net, CSDResU-Net)的肝脏肿瘤分割方法。CSDResU-Net采用了级联操作,解决了因肿瘤在整幅图像中占比小而造成的肿瘤分割数据不平衡问题;通过在分割网络中整合残差单元、深度可分离卷积和空洞卷积,能够增加卷积核感受野并快速提取更具判别性的肝脏肿瘤图像特征,从而提高肝脏肿瘤分割精度。在国际医学图像计算和计算机辅助干预协会肝脏肿瘤分割数据库上的实验结果表明,CSDResU-Net比基线方法的Dice系数指标提升了1.3%,同时发现空洞率对分割网络的性能表现影响较大。 展开更多
关键词 U-Net 残差单元 空洞卷积 深度可分离卷积 肝脏肿瘤分割
在线阅读 下载PDF
基于轻量型卷积神经网络的非固定场景天气识别算法 被引量:10
15
作者 王亚朝 赵伟 +1 位作者 徐海洋 刘建业 《电子测量技术》 2019年第17期152-156,共5页
针对传统方法无法准确识别天气情况且计算量大的问题提出了一种基于轻量型卷积神经网络的非固定场景天气图像分类方法。该方法应用扩张卷积和深度分离卷积来提取天气特征信息,采用残差结构来防止网络退化,并且采用改进的空间金字塔池化... 针对传统方法无法准确识别天气情况且计算量大的问题提出了一种基于轻量型卷积神经网络的非固定场景天气图像分类方法。该方法应用扩张卷积和深度分离卷积来提取天气特征信息,采用残差结构来防止网络退化,并且采用改进的空间金字塔池化层实现多尺寸图片的处理。经验证,所提方法可以对不同尺寸的非固定场景天气图片进行分类,在构建出的数据集上相对于经典分类卷积神经网络以196M的计算量获得93.2%的准确率。所提方法一定程度上可以准确识别非固定场景的天气情况,并且具有应用到嵌入式平台上的前景。 展开更多
关键词 卷积神经网络 扩张卷积 深度可分离卷积 非固定场景 轻量型 多尺寸
在线阅读 下载PDF
基于空洞卷积的医学图像超分辨率重建算法 被引量:4
16
作者 李众 王雅婧 马巧梅 《计算机应用》 CSCD 北大核心 2023年第9期2940-2947,共8页
为解决现有医学图像超分辨率重建中存在的图像细节模糊、全局信息利用不充分等问题,提出一种基于空洞卷积与改进的混合注意力机制的医学图像超分辨率重建算法。首先,将深度可分离卷积与空洞卷积相结合,使用不同大小的感受野对图像进行... 为解决现有医学图像超分辨率重建中存在的图像细节模糊、全局信息利用不充分等问题,提出一种基于空洞卷积与改进的混合注意力机制的医学图像超分辨率重建算法。首先,将深度可分离卷积与空洞卷积相结合,使用不同大小的感受野对图像进行不同尺度的特征提取,从而增强特征表达能力;其次,引入边缘通道注意力机制,在提取图像高频特征的同时融合边缘信息,从而提高模型的重建精度;再次,混合L1损失与感知损失函数作为整体损失函数,使重建后的图像效果更符合人类视觉感观。实验结果表明,在放大因子为3时,与基于卷积神经网络的图像超分辨率(SRCNN)算法、VDSR(Very Deep convolutional networks Super-Resolution)相比,所提算法的峰值信噪比(PSNR)平均提高了11.29%与7.85%;结构相似性(SSIM)平均提高了5.25%和2.44%。可见,所提算法能增强医学图像的效果与纹理特征,且对图像整体结构还原更加完整。 展开更多
关键词 超分辨率重建 医学图像 深度可分离卷积 空洞卷积 注意力机制
在线阅读 下载PDF
基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型 被引量:15
17
作者 李宝奇 黄海宁 +2 位作者 刘纪元 刘正君 韦琳哲 《电子与信息学报》 EI CSCD 北大核心 2021年第10期2854-2862,共9页
针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的... 针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的基础网络和附加特征提取网络,记作SSD-MV2ESK,并为其选择了合理的扩张系数和多尺度系数。在合成孔径声呐图像水下多尺度目标检测数据集SST-DET上,SSD-MV2ESK在模型参数基本相等的条件下,检测精度比SSD-MV2提升4.71%。实验结果表明,SSD-MV2ESK适用于合成孔径声呐图像水下多尺度目标检测任务。 展开更多
关键词 合成孔径声呐 图像水下多尺度目标检测 SSD MobileNet V2 多通道可选择 深度可分离空洞卷积
在线阅读 下载PDF
基于卷积神经网络的带钢表面缺陷检测算法 被引量:10
18
作者 布申申 田怀文 《机械设计与制造》 北大核心 2022年第7期29-33,共5页
针对现有带钢表面缺陷检测方法准确率低、特征泛化性不强、参数多、识别速度慢等缺陷,基于卷积神经网络,采用DenseNet网络的密集连接算法解决梯度消失和梯度爆炸问题,堆叠式空洞卷积扩大卷积核感受野,深度可分离卷积减少网络参数量,提... 针对现有带钢表面缺陷检测方法准确率低、特征泛化性不强、参数多、识别速度慢等缺陷,基于卷积神经网络,采用DenseNet网络的密集连接算法解决梯度消失和梯度爆炸问题,堆叠式空洞卷积扩大卷积核感受野,深度可分离卷积减少网络参数量,提出一种用于带钢表面陷检测的深度神经网络模型Ds-DenseNet算法。以NEU带钢表面缺陷数据集为基础缺陷样本,加入正样本,并对其进行数据增强操作,创建AUG-NEU数据集,本算法在AUG-NEU数据集上的测试精度高达99.38%,参数量为117958,仅占DenseNet121和ResNet50参数量的1.7%和0.5%,识别速度高达1.3ms/frame,分别是DenseNet121、ResNet50识别速度的2.3倍和2倍,完全可以满足带钢生产线实时检测的需求。 展开更多
关键词 缺陷检测 空洞卷积 深度可分离卷积 实时检测
在线阅读 下载PDF
室内服务机器人的实时场景分割算法 被引量:1
19
作者 林杰 陈春梅 +1 位作者 刘桂华 祝礼佳 《计算机工程》 CAS CSCD 北大核心 2021年第7期21-29,共9页
室内场景下的实时场景分割是开发室内服务机器人的一项关键技术,目前关于语义分割的研究已经取得了重大进展,但是多数方法都倾向于设计复杂的网络结构或者高计算成本的模型来提高精度指标,而忽略了实际的部署成本。针对移动机器人算力... 室内场景下的实时场景分割是开发室内服务机器人的一项关键技术,目前关于语义分割的研究已经取得了重大进展,但是多数方法都倾向于设计复杂的网络结构或者高计算成本的模型来提高精度指标,而忽略了实际的部署成本。针对移动机器人算力成本有限的问题,设计一种轻量化的瓶颈结构,并以此为基本元素构建轻量化场景分割网络。该网络通过与特征提取网络级联获得更深层次的语义特征,并且融合浅层特征与深层语义特征获得更丰富的图像特征,其结合深度可分离卷积与多尺度膨胀卷积提取多尺度图像特征,减少了模型的参数量与计算量,同时利用通道注意力机制提升特征加权时的网络分割精度。以512像素×512像素的图像作为输入进行实验,结果表明,该算法在NYUDv2室内场景分割数据集和CamVid数据集上的MIoU分别达到72.7%和59.9%,模型计算力为4.2GFLOPs,但参数量仅为8.3Mb,在移动机器人NVIDIAJetsonXavierNX嵌入式平台帧率可达到42frame/s,其实时性优于DeepLabV3+、PSPNet、SegNet和UNet算法。 展开更多
关键词 轻量化网络 场景分割 深度可分离卷积 膨胀卷积 注意力机制
在线阅读 下载PDF
空中加油场景下的目标联合检测跟踪算法 被引量:1
20
作者 张怡 孙永荣 +2 位作者 赵科东 李华 曾庆化 《计算机应用》 CSCD 北大核心 2022年第9期2893-2899,共7页
针对自主空中加油对接阶段的目标跟踪问题,提出一种空中加油场景下的目标联合检测跟踪算法。该算法采用检测跟踪一体化的CenterTrack网络实现对锥套的追踪,而针对计算量较大、训练耗时过长的问题,分别从模型设计与网络优化两方面改善该... 针对自主空中加油对接阶段的目标跟踪问题,提出一种空中加油场景下的目标联合检测跟踪算法。该算法采用检测跟踪一体化的CenterTrack网络实现对锥套的追踪,而针对计算量较大、训练耗时过长的问题,分别从模型设计与网络优化两方面改善该网络。首先,在跟踪器中引入膨胀卷积组,以在不改变感受野大小的前提下使得网络轻量化;同时,将输出部分的卷积层替换为深度可分离卷积层,从而减少网络的参数量与计算量;然后,对网络进行进一步的优化,即将随机梯度下降(SGD)法与Adam算法相结合,使网络更快收敛至稳定状态;最后,利用真实的空中加油场景视频与地面模拟视频制作相应格式的数据集,并将其用于实验验证。分别在自制的锥套数据集和MOT17公共数据集上进行了训练与测试,证实了提出算法的有效性。相较于原CenterTrack网络,改进的网络Tiny-CenterTrack减少了约48.6%的训练时长,并在实时性方面提升了8.8%。实验结果表明,改进后的网络在不损失网络性能的前提下可有效节省计算资源并在一定程度上提升实时性。 展开更多
关键词 空中加油 检测跟踪一体化 网络轻量化 膨胀卷积 深度可分离卷积 网络优化
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部