This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depen...This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.展开更多
In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in s...In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in some sense. In our result, we give a relation between the initial energy and the viscosity coefficient μ, and it shows that the initial energy can be large if the coefficient of the viscosity μ is taken to be large, which implies that large viscosity μ means large solution.展开更多
We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of th...We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of the viscous shock waves is shown for certain class of large initial perturbation with integral zero which can allow the initial density to have large oscillation. Our analysis relies upon the technique developed by Kanel~ and the continuation argument.展开更多
In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case...In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, we prove that there exists a unique global strong solution which tends pointwise to a non-vacuum equilibrium state at an exponential time-rate as the time tends to infinity.展开更多
This paper is devoted to studying the zero dissipation limit problem for the one-dimensional compressible Navier-Stokes equations with selected density-dependent viscosity.In particular,we focus our attention on the v...This paper is devoted to studying the zero dissipation limit problem for the one-dimensional compressible Navier-Stokes equations with selected density-dependent viscosity.In particular,we focus our attention on the viscosity taking the formμ(ρ)=ρ^(ϵ)(ϵ>0).For the selected density-dependent viscosity,it is proved that the solutions of the one-dimensional compressible Navier-Stokes equations with centered rarefaction wave initial data exist for all time,and converge to the centered rarefaction waves as the viscosity vanishes,uniformly away from the initial discontinuities.New and subtle analysis is developed to overcome difficulties due to the selected density-dependent viscosity to derive energy estimates,in addition to the scaling argument and elementary energy analysis.Moreover,our results extend the studies in[Xin Z P.Comm Pure Appl Math,1993,46(5):621-665].展开更多
In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity ...In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity μ is a positive constant and the bulk viscosity λ(ρ) = ρ^β with β≥0. Note that the initial data can be arbitrarily large to contain vacuum states.展开更多
In this paper,we consider the 3D compressible isentropic Navier-Stokes equations when the shear viscosityμis a positive constant and the bulk viscosity is λ(ρ)=ρ^(β) with β>2,which is a situation that was fir...In this paper,we consider the 3D compressible isentropic Navier-Stokes equations when the shear viscosityμis a positive constant and the bulk viscosity is λ(ρ)=ρ^(β) with β>2,which is a situation that was first introduced by Vaigant and Kazhikhov in[1].The global axisymmetric classical solution with arbitrarily large initial data in a periodic domain Ω={(r,z)|r=√x^(2)+y^(2),(x,y,z)∈R^(3),r∈I⊂(0,+∞),-∞<z<+∞} is obtained.Here the initial density keeps a non-vacuum state ρ>0 when z→±∞.Our results also show that the solution will not develop the vacuum state in any finite time,provided that the initial density is uniformly away from the vacuum.展开更多
Heavy oil is an important resource in current petroleum exploitation, and the chemical composition information of heavy oil is crucial for revealing its viscosity-inducing mechanism and solving practical exploitation ...Heavy oil is an important resource in current petroleum exploitation, and the chemical composition information of heavy oil is crucial for revealing its viscosity-inducing mechanism and solving practical exploitation issues. In this study, the techniques of high-temperature gas chromatography and high-resolution mass spectrometry equipped with an electrospray ionization source were applied to reveal the chemical composition of typical heavy oils from western, central, and eastern China. The results indicate that these heavy oils display significant variations in their bulk properties, with initial boiling points all above 200℃. Utilizing pre-treatment and ESI high-resolution mass spectrometry, an analysis of the molecular composition of saturated hydrocarbons, aromatic hydrocarbons, acidic oxygen compounds, sulfur compounds, basic nitrogen compounds, and neutral nitrogen compounds within the heavy oil was conducted. Ultimately, a semi-quantitative analysis of the molecular composition of the heavy oil was achieved by integrating the elemental content. The semi-quantitative analysis results of Shengli-J8 heavy oil and a conventional Shengli crude oil show that Shengli-J8 heavy oil lacks alkanes and low molecular weight aromatic hydrocarbons, which contributes to its high viscosity. Additionally,characteristic molecular sets for different heavy oils were identified based on the semi-quantitative analysis of molecular composition. The semi-quantitative analysis of molecular composition in heavy oils may provide valuable reference data for establishing theoretical models on the viscosity-inducing mechanism in heavy oils and designing viscosity-reducing agents for heavy oil exploitation.展开更多
Viscosity is one of the most important fundamental properties of fluids.However,accurate acquisition of viscosity for ionic liquids(ILs)remains a critical challenge.In this study,an approach integrating prior physical...Viscosity is one of the most important fundamental properties of fluids.However,accurate acquisition of viscosity for ionic liquids(ILs)remains a critical challenge.In this study,an approach integrating prior physical knowledge into the machine learning(ML)model was proposed to predict the viscosity reliably.The method was based on 16 quantum chemical descriptors determined from the first principles calculations and used as the input of the ML models to represent the size,structure,and interactions of the ILs.Three strategies based on the residuals of the COSMO-RS model were created as the output of ML,where the strategy directly using experimental data was also studied for comparison.The performance of six ML algorithms was compared in all strategies,and the CatBoost model was identified as the optimal one.The strategies employing the relative deviations were superior to that using the absolute deviation,and the relative ratio revealed the systematic prediction error of the COSMO-RS model.The CatBoost model based on the relative ratio achieved the highest prediction accuracy on the test set(R^(2)=0.9999,MAE=0.0325),reducing the average absolute relative deviation(AARD)in modeling from 52.45% to 1.54%.Features importance analysis indicated the average energy correction,solvation-free energy,and polarity moment were the key influencing the systematic deviation.展开更多
In this short paper,we remove the restrictionγ∈(1,3]that was used in the paper"The rate of convergence of the viscosity method for a nonlinear hyperbolic system"(Nonlinear Analysis,1999,38:435-445)and obta...In this short paper,we remove the restrictionγ∈(1,3]that was used in the paper"The rate of convergence of the viscosity method for a nonlinear hyperbolic system"(Nonlinear Analysis,1999,38:435-445)and obtain a global Holder continuous solution and the convergent rate of the viscosity method for the Cauchy problem of the variant nonisentropic system of polytropic gas for any adiabatic exponentγ>1.展开更多
An optical-tweezers-based dual-frequency-band particle tracking system was designed and fabricated for liquid viscositydetection. On the basis of the liquid viscosity dependent model of the particle’s restricted Brow...An optical-tweezers-based dual-frequency-band particle tracking system was designed and fabricated for liquid viscositydetection. On the basis of the liquid viscosity dependent model of the particle’s restricted Brownian motion with theFax´en correction taken into account, the liquid viscosity and optical trap stiffness were determined by fitting the theoreticalprediction with the measured power spectral densities of the particle’s displacement and velocity that were derived from thedual-frequency-band particle tracking data. When the SiO2 beads were employed as probe particles in the measurements ofdifferent kinds of liquids, the measurement results exhibit a good agreement with the reported results, as well as a detectionuncertainty better than 4.6%. This kind of noninvasive economical technique can be applied in diverse environments forboth in situ and ex situ viscosity detection of liquids.展开更多
Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature...Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature coal pitch(CP)is a by-product from coal pyrolysis above 650℃.The substance's molecular structure is characterized by a dense arrangement of aromatic hydrocarbon and alkyl substituents.This unique structure gives it unique chemical properties and excellent drilling performance,surpassing traditional humic acids in drilling operations.Potassium humate is prepared from CP(CP-HA-K)by thermal catalysis.A new type of high-quality humic acid temperature-resistant viscosity-reducer(Graft CP-HA-K polymer)is synthesized with CP-HA-K,hydrolyzed polyacrylonitrile sodium salt(Na-HPAN),urea,formaldehyde,phenol and acrylamide(AAM)as raw materials.The experimental results demonstrate that the most favorable conditions for the catalytic preparation of CP-HA-K are 1 wt%catalyst dosage,30 wt%KOH dosage,a reaction temperature of 250℃,and a reaction time of 2 h,resulting in a maximum yield of CP-HA-K of 39.58%.The temperature resistance of the Graft CP-HA-K polymer is measured to be 177.39℃,which is 55.39℃ higher than that of commercial HA-K.This is due to the abundant presence of amide,hydroxyl,and amine functional groups in the Graft CP-HA-K polymer,which increase the length of the carbon chains,enhance the electrostatic repulsion on the surface of solid particles.After being aged to 120℃ for a specified duration,the Graft CP-HA-K polymer demonstrates significantly higher viscosity reduction(42.12%)compared to commercial HA-K(C-HA-K).Furthermore,the Graft CP-HA-K polymer can tolerate a high salt concentration of 8000 mg.L-1,measured after the addition of optimum amount of 3 wt%Graft CP-HA-K polymer.The action mechanism of Graft CP-HA-K polymer on high-temperature drilling fluid is that the Graft CP-HA-K polymer can increase the repulsive force between solid particles and disrupt bentonite's reticulation structure.Overall,this research provides novelty insights into the synthesis of artificial humic acid materials and the development of temperature-resistant viscosity reducers,offering a new avenue for the utilization of CP resources.展开更多
A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in por...A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.展开更多
The primary impediment to the recovery of heavy oil lies in its high viscosity, which necessitates a deeper understanding of the molecular mechanisms governing its dynamic behavior for enhanced oil recovery. However, ...The primary impediment to the recovery of heavy oil lies in its high viscosity, which necessitates a deeper understanding of the molecular mechanisms governing its dynamic behavior for enhanced oil recovery. However, there remains a dearth of understanding regarding the complex molecular composition inherent to heavy oil. In this study, we employed high-resolution mass spectrometry in conjunction with various chemical derivatization and ionization methods to obtain semi-quantitative results of molecular group compositions of 35 heavy oils. The gradient boosting(GB) model has been further used to acquire the feature importance rank(FIR). A feature is an independently observable property of the observed object. Feature importance can measure the contribution of each input feature to the model prediction result, indicate the degree of correlation between the feature and the target,unveil which features are indicative of certain predictions. We have developed a framework for utilizing physical insights into the impact of molecular group compositions on viscosity. The results of machine learning(ML) conducted by GB show that the viscosity of heavy oils is primarily influenced by light components, specifically small molecular hydrocarbons with low condensation degrees, as well as petroleum acids composed of acidic oxygen groups and neutral nitrogen groups. Additionally, large molecular aromatic hydrocarbons and sulfoxides also play significant roles in determine the viscosity.展开更多
Tungstated zirconia(WO_(3)/ZrO_(2))solid acid catalysts with different WO_(3) contents were prepared by a hydrothermal method and then used in the catalytic aquathermolysis of heavy oil from Xinjiang.The WO_(3)/ZrO_(2...Tungstated zirconia(WO_(3)/ZrO_(2))solid acid catalysts with different WO_(3) contents were prepared by a hydrothermal method and then used in the catalytic aquathermolysis of heavy oil from Xinjiang.The WO_(3)/ZrO_(2) solid acid catalyst was characterized by a range of characterization methods,including X-ray diffraction,NH3-temperature programmed desorption,and pyridine infrared spectroscopy.The WO_(3) content of the WO_(3)/ZrO_(2) catalysts had an important impact on the structure and property of the catalysts.When the WO_(3) mass fraction was 20%,it facilitated the formation of tetragonal zirconia,thereby enhancing the creation of robust acidic sites.Acidity is considered to have a strong impact on the catalytic performance of the aquathermolysis of heavy oil.When the catalyst containing 20%WO_(3) was used to catalyze the aquathermolysis of heavy oil under conditions of 14.5 MPa,340℃,and 24 h,the viscosity of heavy oil decreased from 47266 to 5398 mPa·s and the viscosity reduction rate reached 88.6%.The physicochemical properties of heavy oil before and after the aquathermolysis were analyzed using a saturates,aromatics,resins,and asphaltenes analysis,gas chromatography,elemental analysis,densimeter etc.After the aquathermolysis,the saturate and aromatic contents significantly increased from 43.3%to 48.35%and 19.47%to 21.88%,respectively,with large reductions in the content of resin and asphaltene from 28.22%to 25.06%and 5.36%to 2.03%,respectively.The sulfur and nitrogen contents,and the density of the oil were significantly decreased.These factors were likely the main reasons for promoting the viscosity reduction of heavy oil during the aquathermolysis over the WO_(3)/ZrO_(2) solid acid catalysts.展开更多
Aim To study the relationships between average molecular mass and intrinsic viscosity of polyanhydrides. Methods With chloroform as solvent and petroleum ether as the precipitating agent polyanhydride was separated in...Aim To study the relationships between average molecular mass and intrinsic viscosity of polyanhydrides. Methods With chloroform as solvent and petroleum ether as the precipitating agent polyanhydride was separated into a series of grades with different average molecular mass. The absolute average molecular mass (M) and intrinsic viscosity ([]) of every grade were measured. Results and Conclusion The relationships between [] and M of three typical polyanhydrides were obtained from bi-logarithm coordinate plotting of [] versus M.展开更多
Aim To prove the uniqueness of the viscosity solutions for the initial value problems of one type of second order parabolic partial differential equations: Methods Using comparison theorem. Results and Conclusion If u...Aim To prove the uniqueness of the viscosity solutions for the initial value problems of one type of second order parabolic partial differential equations: Methods Using comparison theorem. Results and Conclusion If u0 is uniform continuousfunction in RN , F is continuous function in RNx(N) and F is degenerate elliptic, then thisequation has the sole viscosity solution.展开更多
To reduce the viscosity of highly-viscous oil of the Tahe oilfield (Xinjiang,China),an oilsoluble polybasic copolymer viscosity reducer for heavy oil was synthesized using the orthogonal method.The optimum reaction ...To reduce the viscosity of highly-viscous oil of the Tahe oilfield (Xinjiang,China),an oilsoluble polybasic copolymer viscosity reducer for heavy oil was synthesized using the orthogonal method.The optimum reaction conditions are obtained as follows:under the protection of nitrogen,a reaction time of 9 h,monomer mole ratio of reaction materials of 3:2:2 (The monomers are 2-propenoic acid,docosyl ester,maleic anhydride and styrene,respectively),initiator amount of 0.8% (mass percent of the sum of all the monomers) and reaction temperature of 80 oC.This synthesized viscosity reducer is more effective than commercial viscosity reducers.The rate of viscosity reduction reached 95.5% at 50 oC.Infrared spectra (IR) and interfacial tensions of heavy oil with and without viscosity reducer were investigated to understand the viscosity reduction mechanism.When viscosity reducer is added,the molecules of the viscosity reducer are inserted amongst the molecules of crude oil,altering the original intermolecular structure of crude oil and weakening its ability to form hydrogen bonds with hydroxyl or carboxyl groups,so the viscosity of crude oil is reduced.Field tests of the newly developed oil-soluble viscosity reducer was carried out in the Tahe Oilfield,and the results showed that 44.5% less light oil was needed to dilute the heavy oil to achieve the needed viscosity.展开更多
In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well ...In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well as through the porous media constituting natural petroleum reservoirs, requires knowledge of the viscosity of the fluid at the pressure and temperature involved. Although there are numerous publications concerning the viscosity of methane at atmospheric pressure, there appears to be little information available relating to the effect of pressure and temperature upon the viscosity. A survey of the literature reveals that the disagreements between published data on the viscosity of methane are common and that most investigations have been conducted over restricted temperature and pressure ranges. Experimental viscosity data for methane are presented for temperatures from 320 to 400 K and pressures from 3000 to 140000 kPa by using falling body viscometer. A summary is given to evaluate the available data for methane, and a comparison is presented for that data common to the experimental range reported in this paper. A new and reliable correlation for methane gas viscosity is presented. Predicted values are given for temperatures up to 400 K and pressures up to 140000 kPa with Average Absolute Percent Relative Error (EABS) of 0.794.展开更多
The rheological properties of South China Sea (SCS) crude oil were studied. A group of synthetic long-chain polymers, including octadecyl acrylate-maleic anhydride bidodecyl amide copolymer (VR-D), octadecyl acryl...The rheological properties of South China Sea (SCS) crude oil were studied. A group of synthetic long-chain polymers, including octadecyl acrylate-maleic anhydride bidodecyl amide copolymer (VR-D), octadecyl acrylate-maleic anhydride bioctadecyl amide copolymer (VR-O) and octadecyl acrylate-maleic anhydride phenly amide copolymer (VR-A), were employed to serve as viscosity reducers (VRs). Their performance was evaluated by both experimental and computational methodologies. The results suggest that the SCS crude oil has low wax content yet high resin and asphaltene contents, which lead to high viscosity through formation of association structures. Additionally, the SCS crude oil appears to be a pseudoplastic fluid showing linear shear stress-shear rate dependence at low temperature. Interestingly, it gradually evolves into a Newtonian fluid with exponential relationship between shear stress and shear rate at higher temperature. Synthetic VRs demonstrate desirable and effective performance on improvement of the rheological properties of SCS crude oil. Upon the introduction of 1000ppm VR-O, which is synthesized by using octadecylamine in the aminolysis reaction, the viscosity of SCS crude oil is decreased by 44.2% at 15 ℃ and 40.2% at 40℃. The computational study suggests significant energy level increase and shear stress decrease for VR-containing crude oil systems.展开更多
基金supported by the Key Project of the NSFC(12131010)the NSFC(11771155,12271032)+1 种基金the NSF of Guangdong Province(2021A1515010249,2021A1515010303)supported by the NSFC(11971179,12371205)。
文摘This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.
文摘In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in some sense. In our result, we give a relation between the initial energy and the viscosity coefficient μ, and it shows that the initial energy can be large if the coefficient of the viscosity μ is taken to be large, which implies that large viscosity μ means large solution.
基金supported by"the Fundamental Research Funds for the Central Universities"
文摘We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of the viscous shock waves is shown for certain class of large initial perturbation with integral zero which can allow the initial density to have large oscillation. Our analysis relies upon the technique developed by Kanel~ and the continuation argument.
基金supported by NNSFC(11101145),supported by NNSFC(11326140 and11501323)China Postdoctoral Science Foundation(2012M520360)+1 种基金Doctoral Foundation of North China University of Water Sources and Electric Power(201032),Innovation Scientists and Technicians Troop Construction Projects of Henan Provincethe Doctoral Starting up Foundation of Quzhou University(BSYJ201314 and XNZQN201313)
文摘In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, we prove that there exists a unique global strong solution which tends pointwise to a non-vacuum equilibrium state at an exponential time-rate as the time tends to infinity.
基金supported by the National Natural Science Foundation of China(11671319,11931013).
文摘This paper is devoted to studying the zero dissipation limit problem for the one-dimensional compressible Navier-Stokes equations with selected density-dependent viscosity.In particular,we focus our attention on the viscosity taking the formμ(ρ)=ρ^(ϵ)(ϵ>0).For the selected density-dependent viscosity,it is proved that the solutions of the one-dimensional compressible Navier-Stokes equations with centered rarefaction wave initial data exist for all time,and converge to the centered rarefaction waves as the viscosity vanishes,uniformly away from the initial discontinuities.New and subtle analysis is developed to overcome difficulties due to the selected density-dependent viscosity to derive energy estimates,in addition to the scaling argument and elementary energy analysis.Moreover,our results extend the studies in[Xin Z P.Comm Pure Appl Math,1993,46(5):621-665].
基金supported by China Postdoctoral Science Foundation(2012M520205)supported by National Natural SciencesFoundation of China(11171229,11231006)Project of Beijing Chang Cheng Xue Zhe
文摘In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity μ is a positive constant and the bulk viscosity λ(ρ) = ρ^β with β≥0. Note that the initial data can be arbitrarily large to contain vacuum states.
基金supported by NNSFC(11701443,11901444,11931013)Natural Science Basic Research Plan in Shaanxi Province of China(2019JQ-870)。
文摘In this paper,we consider the 3D compressible isentropic Navier-Stokes equations when the shear viscosityμis a positive constant and the bulk viscosity is λ(ρ)=ρ^(β) with β>2,which is a situation that was first introduced by Vaigant and Kazhikhov in[1].The global axisymmetric classical solution with arbitrarily large initial data in a periodic domain Ω={(r,z)|r=√x^(2)+y^(2),(x,y,z)∈R^(3),r∈I⊂(0,+∞),-∞<z<+∞} is obtained.Here the initial density keeps a non-vacuum state ρ>0 when z→±∞.Our results also show that the solution will not develop the vacuum state in any finite time,provided that the initial density is uniformly away from the vacuum.
基金supported by the National Key R&D Program of China (2018YFA0702400)the Science Foundation of China University of Petroleum, Beijing (2462023QNXZ017)。
文摘Heavy oil is an important resource in current petroleum exploitation, and the chemical composition information of heavy oil is crucial for revealing its viscosity-inducing mechanism and solving practical exploitation issues. In this study, the techniques of high-temperature gas chromatography and high-resolution mass spectrometry equipped with an electrospray ionization source were applied to reveal the chemical composition of typical heavy oils from western, central, and eastern China. The results indicate that these heavy oils display significant variations in their bulk properties, with initial boiling points all above 200℃. Utilizing pre-treatment and ESI high-resolution mass spectrometry, an analysis of the molecular composition of saturated hydrocarbons, aromatic hydrocarbons, acidic oxygen compounds, sulfur compounds, basic nitrogen compounds, and neutral nitrogen compounds within the heavy oil was conducted. Ultimately, a semi-quantitative analysis of the molecular composition of the heavy oil was achieved by integrating the elemental content. The semi-quantitative analysis results of Shengli-J8 heavy oil and a conventional Shengli crude oil show that Shengli-J8 heavy oil lacks alkanes and low molecular weight aromatic hydrocarbons, which contributes to its high viscosity. Additionally,characteristic molecular sets for different heavy oils were identified based on the semi-quantitative analysis of molecular composition. The semi-quantitative analysis of molecular composition in heavy oils may provide valuable reference data for establishing theoretical models on the viscosity-inducing mechanism in heavy oils and designing viscosity-reducing agents for heavy oil exploitation.
基金supported by the National Natural Science Foundation of China(21838004),STINT(CH2019-8287)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23-1467)the financial support from Horizon-EIC and Pathfinder challenges,Grant Number:101070976.
文摘Viscosity is one of the most important fundamental properties of fluids.However,accurate acquisition of viscosity for ionic liquids(ILs)remains a critical challenge.In this study,an approach integrating prior physical knowledge into the machine learning(ML)model was proposed to predict the viscosity reliably.The method was based on 16 quantum chemical descriptors determined from the first principles calculations and used as the input of the ML models to represent the size,structure,and interactions of the ILs.Three strategies based on the residuals of the COSMO-RS model were created as the output of ML,where the strategy directly using experimental data was also studied for comparison.The performance of six ML algorithms was compared in all strategies,and the CatBoost model was identified as the optimal one.The strategies employing the relative deviations were superior to that using the absolute deviation,and the relative ratio revealed the systematic prediction error of the COSMO-RS model.The CatBoost model based on the relative ratio achieved the highest prediction accuracy on the test set(R^(2)=0.9999,MAE=0.0325),reducing the average absolute relative deviation(AARD)in modeling from 52.45% to 1.54%.Features importance analysis indicated the average energy correction,solvation-free energy,and polarity moment were the key influencing the systematic deviation.
基金supported by the National Natural Science Foundation of China(12071409)。
文摘In this short paper,we remove the restrictionγ∈(1,3]that was used in the paper"The rate of convergence of the viscosity method for a nonlinear hyperbolic system"(Nonlinear Analysis,1999,38:435-445)and obtain a global Holder continuous solution and the convergent rate of the viscosity method for the Cauchy problem of the variant nonisentropic system of polytropic gas for any adiabatic exponentγ>1.
基金the National NaturalScience Foundation of China (Grant No. 62175135)theSpecial Foundation of Local Scientific and TechnologicalDevelopment Guided by Central Government (GrantNo. YDZJSX20231A006)the Fundamental ResearchProgram of Shanxi Province (Grant No. 202103021224025).
文摘An optical-tweezers-based dual-frequency-band particle tracking system was designed and fabricated for liquid viscositydetection. On the basis of the liquid viscosity dependent model of the particle’s restricted Brownian motion with theFax´en correction taken into account, the liquid viscosity and optical trap stiffness were determined by fitting the theoreticalprediction with the measured power spectral densities of the particle’s displacement and velocity that were derived from thedual-frequency-band particle tracking data. When the SiO2 beads were employed as probe particles in the measurements ofdifferent kinds of liquids, the measurement results exhibit a good agreement with the reported results, as well as a detectionuncertainty better than 4.6%. This kind of noninvasive economical technique can be applied in diverse environments forboth in situ and ex situ viscosity detection of liquids.
基金supported by the Key R&D projects in Xinjiang (2022B01042)Research and Innovation Team Cultivation Plan of Yili Normal University (#CXZK2021002)。
文摘Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature coal pitch(CP)is a by-product from coal pyrolysis above 650℃.The substance's molecular structure is characterized by a dense arrangement of aromatic hydrocarbon and alkyl substituents.This unique structure gives it unique chemical properties and excellent drilling performance,surpassing traditional humic acids in drilling operations.Potassium humate is prepared from CP(CP-HA-K)by thermal catalysis.A new type of high-quality humic acid temperature-resistant viscosity-reducer(Graft CP-HA-K polymer)is synthesized with CP-HA-K,hydrolyzed polyacrylonitrile sodium salt(Na-HPAN),urea,formaldehyde,phenol and acrylamide(AAM)as raw materials.The experimental results demonstrate that the most favorable conditions for the catalytic preparation of CP-HA-K are 1 wt%catalyst dosage,30 wt%KOH dosage,a reaction temperature of 250℃,and a reaction time of 2 h,resulting in a maximum yield of CP-HA-K of 39.58%.The temperature resistance of the Graft CP-HA-K polymer is measured to be 177.39℃,which is 55.39℃ higher than that of commercial HA-K.This is due to the abundant presence of amide,hydroxyl,and amine functional groups in the Graft CP-HA-K polymer,which increase the length of the carbon chains,enhance the electrostatic repulsion on the surface of solid particles.After being aged to 120℃ for a specified duration,the Graft CP-HA-K polymer demonstrates significantly higher viscosity reduction(42.12%)compared to commercial HA-K(C-HA-K).Furthermore,the Graft CP-HA-K polymer can tolerate a high salt concentration of 8000 mg.L-1,measured after the addition of optimum amount of 3 wt%Graft CP-HA-K polymer.The action mechanism of Graft CP-HA-K polymer on high-temperature drilling fluid is that the Graft CP-HA-K polymer can increase the repulsive force between solid particles and disrupt bentonite's reticulation structure.Overall,this research provides novelty insights into the synthesis of artificial humic acid materials and the development of temperature-resistant viscosity reducers,offering a new avenue for the utilization of CP resources.
基金Supported by the Original Exploration Project of National Natural Science Foundation of China(5215000105)Young Teachers Fund for Higher Education Institutions of Huo Yingdong Education Foundation(171043)。
文摘A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.
基金supported by the National Key R&D Program of China (2018YFA0702400)。
文摘The primary impediment to the recovery of heavy oil lies in its high viscosity, which necessitates a deeper understanding of the molecular mechanisms governing its dynamic behavior for enhanced oil recovery. However, there remains a dearth of understanding regarding the complex molecular composition inherent to heavy oil. In this study, we employed high-resolution mass spectrometry in conjunction with various chemical derivatization and ionization methods to obtain semi-quantitative results of molecular group compositions of 35 heavy oils. The gradient boosting(GB) model has been further used to acquire the feature importance rank(FIR). A feature is an independently observable property of the observed object. Feature importance can measure the contribution of each input feature to the model prediction result, indicate the degree of correlation between the feature and the target,unveil which features are indicative of certain predictions. We have developed a framework for utilizing physical insights into the impact of molecular group compositions on viscosity. The results of machine learning(ML) conducted by GB show that the viscosity of heavy oils is primarily influenced by light components, specifically small molecular hydrocarbons with low condensation degrees, as well as petroleum acids composed of acidic oxygen groups and neutral nitrogen groups. Additionally, large molecular aromatic hydrocarbons and sulfoxides also play significant roles in determine the viscosity.
基金the financial support from the Open Fund Project of the National Oil Shale Exploitation Research and Development Center,China(No.33550000-22-ZC0613-0255)the Graduate Student Innovation and Practical Ability Training Program of Xi’an Shiyou University(No.YCS23213098)+3 种基金the National Natural Science Foundation of China(No.52274039)the Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2024JC-YBMS-085)the CNPC Innovation Found(No.2022DQ02-0402)The authors also thank the Modern Analysis and Test Center of Xi’an Shiyou University for their help with the characterization of catalysts and analysis of products.
文摘Tungstated zirconia(WO_(3)/ZrO_(2))solid acid catalysts with different WO_(3) contents were prepared by a hydrothermal method and then used in the catalytic aquathermolysis of heavy oil from Xinjiang.The WO_(3)/ZrO_(2) solid acid catalyst was characterized by a range of characterization methods,including X-ray diffraction,NH3-temperature programmed desorption,and pyridine infrared spectroscopy.The WO_(3) content of the WO_(3)/ZrO_(2) catalysts had an important impact on the structure and property of the catalysts.When the WO_(3) mass fraction was 20%,it facilitated the formation of tetragonal zirconia,thereby enhancing the creation of robust acidic sites.Acidity is considered to have a strong impact on the catalytic performance of the aquathermolysis of heavy oil.When the catalyst containing 20%WO_(3) was used to catalyze the aquathermolysis of heavy oil under conditions of 14.5 MPa,340℃,and 24 h,the viscosity of heavy oil decreased from 47266 to 5398 mPa·s and the viscosity reduction rate reached 88.6%.The physicochemical properties of heavy oil before and after the aquathermolysis were analyzed using a saturates,aromatics,resins,and asphaltenes analysis,gas chromatography,elemental analysis,densimeter etc.After the aquathermolysis,the saturate and aromatic contents significantly increased from 43.3%to 48.35%and 19.47%to 21.88%,respectively,with large reductions in the content of resin and asphaltene from 28.22%to 25.06%and 5.36%to 2.03%,respectively.The sulfur and nitrogen contents,and the density of the oil were significantly decreased.These factors were likely the main reasons for promoting the viscosity reduction of heavy oil during the aquathermolysis over the WO_(3)/ZrO_(2) solid acid catalysts.
文摘Aim To study the relationships between average molecular mass and intrinsic viscosity of polyanhydrides. Methods With chloroform as solvent and petroleum ether as the precipitating agent polyanhydride was separated into a series of grades with different average molecular mass. The absolute average molecular mass (M) and intrinsic viscosity ([]) of every grade were measured. Results and Conclusion The relationships between [] and M of three typical polyanhydrides were obtained from bi-logarithm coordinate plotting of [] versus M.
文摘Aim To prove the uniqueness of the viscosity solutions for the initial value problems of one type of second order parabolic partial differential equations: Methods Using comparison theorem. Results and Conclusion If u0 is uniform continuousfunction in RN , F is continuous function in RNx(N) and F is degenerate elliptic, then thisequation has the sole viscosity solution.
文摘To reduce the viscosity of highly-viscous oil of the Tahe oilfield (Xinjiang,China),an oilsoluble polybasic copolymer viscosity reducer for heavy oil was synthesized using the orthogonal method.The optimum reaction conditions are obtained as follows:under the protection of nitrogen,a reaction time of 9 h,monomer mole ratio of reaction materials of 3:2:2 (The monomers are 2-propenoic acid,docosyl ester,maleic anhydride and styrene,respectively),initiator amount of 0.8% (mass percent of the sum of all the monomers) and reaction temperature of 80 oC.This synthesized viscosity reducer is more effective than commercial viscosity reducers.The rate of viscosity reduction reached 95.5% at 50 oC.Infrared spectra (IR) and interfacial tensions of heavy oil with and without viscosity reducer were investigated to understand the viscosity reduction mechanism.When viscosity reducer is added,the molecules of the viscosity reducer are inserted amongst the molecules of crude oil,altering the original intermolecular structure of crude oil and weakening its ability to form hydrogen bonds with hydroxyl or carboxyl groups,so the viscosity of crude oil is reduced.Field tests of the newly developed oil-soluble viscosity reducer was carried out in the Tahe Oilfield,and the results showed that 44.5% less light oil was needed to dilute the heavy oil to achieve the needed viscosity.
基金supported by the Research Institute of Petroleum Industry-Kermanshah Campus.
文摘In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well as through the porous media constituting natural petroleum reservoirs, requires knowledge of the viscosity of the fluid at the pressure and temperature involved. Although there are numerous publications concerning the viscosity of methane at atmospheric pressure, there appears to be little information available relating to the effect of pressure and temperature upon the viscosity. A survey of the literature reveals that the disagreements between published data on the viscosity of methane are common and that most investigations have been conducted over restricted temperature and pressure ranges. Experimental viscosity data for methane are presented for temperatures from 320 to 400 K and pressures from 3000 to 140000 kPa by using falling body viscometer. A summary is given to evaluate the available data for methane, and a comparison is presented for that data common to the experimental range reported in this paper. A new and reliable correlation for methane gas viscosity is presented. Predicted values are given for temperatures up to 400 K and pressures up to 140000 kPa with Average Absolute Percent Relative Error (EABS) of 0.794.
基金financially supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China(grant no.91634112)the Natural Science Foundation of Shanghai(grant no.16ZR1408100)+2 种基金the Fundamental Research Funds for the Central Universities of China(grant no.22A201514010)the Open Project of State Key Laboratory of Chemical Engineering(SKL-Ch E-16C01)the institutional funds from the Gene and Linda Voiland School of Chemical Engineering and Bioengineering at Washington State University
文摘The rheological properties of South China Sea (SCS) crude oil were studied. A group of synthetic long-chain polymers, including octadecyl acrylate-maleic anhydride bidodecyl amide copolymer (VR-D), octadecyl acrylate-maleic anhydride bioctadecyl amide copolymer (VR-O) and octadecyl acrylate-maleic anhydride phenly amide copolymer (VR-A), were employed to serve as viscosity reducers (VRs). Their performance was evaluated by both experimental and computational methodologies. The results suggest that the SCS crude oil has low wax content yet high resin and asphaltene contents, which lead to high viscosity through formation of association structures. Additionally, the SCS crude oil appears to be a pseudoplastic fluid showing linear shear stress-shear rate dependence at low temperature. Interestingly, it gradually evolves into a Newtonian fluid with exponential relationship between shear stress and shear rate at higher temperature. Synthetic VRs demonstrate desirable and effective performance on improvement of the rheological properties of SCS crude oil. Upon the introduction of 1000ppm VR-O, which is synthesized by using octadecylamine in the aminolysis reaction, the viscosity of SCS crude oil is decreased by 44.2% at 15 ℃ and 40.2% at 40℃. The computational study suggests significant energy level increase and shear stress decrease for VR-containing crude oil systems.