To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used....To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used. Drinking water samples from 29 wells in Zhenping County, China, were collected and analyzed. 35 parameters on water quality were selected, such as chloride concentration, sulphate concentration, total hardness, nitrate concentration, fluoride concentration, turbidity, pH, chromium concentration, COD, bacterium amount, total coliforms and color. The best spatial interpolation methods for the 35 parameters were found and selected from all types of interpolation methods in GIS environment according to the minimum cross-validation errors. The ACCA was improved through three strategies, namely mixed distance function, average similitude degree and probability conversion functions. Then, the ACCA was carried out to obtain different water quality grades in the GIS environment. In the end, the result from the ACCA was compared with those from the competitive Hopfield neural network(CHNN) to validate the feasibility and effectiveness of the ACCA according to three evaluation indexes, which are stochastic sampling method, pixel amount and convergence speed. It is shown that the spatial water quality grades obtained from the ACCA were more effective, accurate and intelligent than those obtained from the CHNN.展开更多
This paper introduces niching particle swarm optimiza- tion (nichePSO) into clustering analysis and puts forward a cluster- ing algorithm which uses nichePSO to optimize density functions. Firstly, this paper improv...This paper introduces niching particle swarm optimiza- tion (nichePSO) into clustering analysis and puts forward a cluster- ing algorithm which uses nichePSO to optimize density functions. Firstly, this paper improves main swarm training models and in- creases their ability of space searching. Secondly, the radius of sub-swarms is defined adaptively according to the actual clus- tering problem, which can be useful for the niches' forming and searching. At last, a novel method that distributes samples to the corresponding cluster is proposed. Numerical results illustrate that this algorithm based on the density function and nichePSO could cluster unbalanced density datasets into the correct clusters auto- matically and accurately.展开更多
A quick and accurate extraction of dominant colors of background images is the basis of adaptive camouflage design.This paper proposes a Color Image Quick Fuzzy C-Means(CIQFCM)clustering algorithm based on clustering ...A quick and accurate extraction of dominant colors of background images is the basis of adaptive camouflage design.This paper proposes a Color Image Quick Fuzzy C-Means(CIQFCM)clustering algorithm based on clustering spatial mapping.First,the clustering sample space was mapped from the image pixels to the quantized color space,and several methods were adopted to compress the amount of clustering samples.Then,an improved pedigree clustering algorithm was applied to obtain the initial class centers.Finally,CIQFCM clustering algorithm was used for quick extraction of dominant colors of background image.After theoretical analysis of the effect and efficiency of the CIQFCM algorithm,several experiments were carried out to discuss the selection of proper quantization intervals and to verify the effect and efficiency of the CIQFCM algorithm.The results indicated that the value of quantization intervals should be set to 4,and the proposed algorithm could improve the clustering efficiency while maintaining the clustering effect.In addition,as the image size increased from 128×128 to 1024×1024,the efficiency improvement of CIQFCM algorithm was increased from 6.44 times to 36.42 times,which demonstrated the significant advantage of CIQFCM algorithm in dominant colors extraction of large-size images.展开更多
The characteristic of geographic information system(GfS) spatial data operation is that query is much more frequent than insertion and deletion, and a new hybrid spatial clustering method used to build R-tree for GI...The characteristic of geographic information system(GfS) spatial data operation is that query is much more frequent than insertion and deletion, and a new hybrid spatial clustering method used to build R-tree for GIS spatial data was proposed in this paper. According to the aggregation of clustering method, R-tree was used to construct rules and specialty of spatial data. HCR-tree was the R-tree built with HCR algorithm. To test the efficiency of HCR algorithm, it was applied not only to the data organization of static R-tree but also to the nodes splitting of dynamic R-tree. The results show that R-tree with HCR has some advantages such as higher searching efficiency, less disk accesses and so on.展开更多
基金Projects(41161020,41261026) supported by the National Natural Science Foundation of ChinaProject(BQD2012013) supported by the Research starting Funds for Imported Talents,Ningxia University,China+1 种基金Project(ZR1209) supported by the Natural Science Funds,Ningxia University,ChinaProject(NGY2013005) supported by the Key Science Project of Colleges and Universities in Ningxia,China
文摘To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used. Drinking water samples from 29 wells in Zhenping County, China, were collected and analyzed. 35 parameters on water quality were selected, such as chloride concentration, sulphate concentration, total hardness, nitrate concentration, fluoride concentration, turbidity, pH, chromium concentration, COD, bacterium amount, total coliforms and color. The best spatial interpolation methods for the 35 parameters were found and selected from all types of interpolation methods in GIS environment according to the minimum cross-validation errors. The ACCA was improved through three strategies, namely mixed distance function, average similitude degree and probability conversion functions. Then, the ACCA was carried out to obtain different water quality grades in the GIS environment. In the end, the result from the ACCA was compared with those from the competitive Hopfield neural network(CHNN) to validate the feasibility and effectiveness of the ACCA according to three evaluation indexes, which are stochastic sampling method, pixel amount and convergence speed. It is shown that the spatial water quality grades obtained from the ACCA were more effective, accurate and intelligent than those obtained from the CHNN.
基金supported by the National Natural Science Foundation of China (708710157103100271171030)
文摘This paper introduces niching particle swarm optimiza- tion (nichePSO) into clustering analysis and puts forward a cluster- ing algorithm which uses nichePSO to optimize density functions. Firstly, this paper improves main swarm training models and in- creases their ability of space searching. Secondly, the radius of sub-swarms is defined adaptively according to the actual clus- tering problem, which can be useful for the niches' forming and searching. At last, a novel method that distributes samples to the corresponding cluster is proposed. Numerical results illustrate that this algorithm based on the density function and nichePSO could cluster unbalanced density datasets into the correct clusters auto- matically and accurately.
文摘A quick and accurate extraction of dominant colors of background images is the basis of adaptive camouflage design.This paper proposes a Color Image Quick Fuzzy C-Means(CIQFCM)clustering algorithm based on clustering spatial mapping.First,the clustering sample space was mapped from the image pixels to the quantized color space,and several methods were adopted to compress the amount of clustering samples.Then,an improved pedigree clustering algorithm was applied to obtain the initial class centers.Finally,CIQFCM clustering algorithm was used for quick extraction of dominant colors of background image.After theoretical analysis of the effect and efficiency of the CIQFCM algorithm,several experiments were carried out to discuss the selection of proper quantization intervals and to verify the effect and efficiency of the CIQFCM algorithm.The results indicated that the value of quantization intervals should be set to 4,and the proposed algorithm could improve the clustering efficiency while maintaining the clustering effect.In addition,as the image size increased from 128×128 to 1024×1024,the efficiency improvement of CIQFCM algorithm was increased from 6.44 times to 36.42 times,which demonstrated the significant advantage of CIQFCM algorithm in dominant colors extraction of large-size images.
文摘The characteristic of geographic information system(GfS) spatial data operation is that query is much more frequent than insertion and deletion, and a new hybrid spatial clustering method used to build R-tree for GIS spatial data was proposed in this paper. According to the aggregation of clustering method, R-tree was used to construct rules and specialty of spatial data. HCR-tree was the R-tree built with HCR algorithm. To test the efficiency of HCR algorithm, it was applied not only to the data organization of static R-tree but also to the nodes splitting of dynamic R-tree. The results show that R-tree with HCR has some advantages such as higher searching efficiency, less disk accesses and so on.