期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
应用RBF神经网络反演二维重力密度分布 被引量:11
1
作者 耿美霞 杨庆节 《石油地球物理勘探》 EI CSCD 北大核心 2013年第4期651-657,676+506,共7页
密度反演以物性变化勾绘场源范围,具有模拟复杂地质体的能力和较强的适应能力,是提高重力方法解决地质问题能力的重要途径。本文利用径向基函数(RBF,Radical Basis Function)神经网络突出的非线性映射能力和泛化性,实现了重力密度二维... 密度反演以物性变化勾绘场源范围,具有模拟复杂地质体的能力和较强的适应能力,是提高重力方法解决地质问题能力的重要途径。本文利用径向基函数(RBF,Radical Basis Function)神经网络突出的非线性映射能力和泛化性,实现了重力密度二维非线性反演。模型计算证明了该方法的有效性,同时探讨了网络结构、参数的选择以及随机噪声对反演结果的影响。应用此法对中国西北地区阿门子处的重力异常进行反演计算,证实了此方法的实用性。 展开更多
关键词 密度 反演 非惟一性 rbf神经网路
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部