文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC...文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC算法对质量特征数据进行聚类分析,将聚类结果作为模型输入训练得到各类超球体中心和决策边界;以此建立基于内核距离的DPC控制图,实现对生产过程质量波动的实时监控;最后将该控制图应用到再制造曲轴生产过程监控中。结果表明,该文提出的DPC控制图可以有效监测再制造曲轴生产过程质量异常波动,验证了该检测方法的可行性和有效性。展开更多
针对密度峰值快速搜索聚类(Clustering by fast search and find of density peaks,DPC)算法截断距离dc需手动给出的缺陷,提出了布谷鸟优化的密度峰值快速搜索聚类算法(An Improved Cuckoo Search Optimization-based Density Peak Clus...针对密度峰值快速搜索聚类(Clustering by fast search and find of density peaks,DPC)算法截断距离dc需手动给出的缺陷,提出了布谷鸟优化的密度峰值快速搜索聚类算法(An Improved Cuckoo Search Optimization-based Density Peak Clustering Algorithm,CS-DPC)。引入余弦相似度原理,将方向与实际距离相结合,更好区分两类簇中间区域数据点的归属度。选择5个人工数据集和3个标准UCI数据集进行了实验仿真。展开更多
针对风电系统故障种类多,故障信号数据维数大,诊断正确率低的问题,提出一种利用密度峰值优化初始质心K-means分类算法进行诊断;K-means算法的初始聚类质心是随机选取的,聚类质心选取质量严重影响聚类结果的稳定性,当聚类较大维数的数据...针对风电系统故障种类多,故障信号数据维数大,诊断正确率低的问题,提出一种利用密度峰值优化初始质心K-means分类算法进行诊断;K-means算法的初始聚类质心是随机选取的,聚类质心选取质量严重影响聚类结果的稳定性,当聚类较大维数的数据时效果很不理想。而CFSFDP( clustering by fast search and find of density peaks)算法对维数较大的数据有良好的聚类能力,但是对于同类多峰的数据,分类效果稳定性变差,总体效果不够理想。为此,综合两种算法的优点,本文提出一种快速密度峰值搜索算法K-CFSFDP( clustering by fast search and find of density peaks)优化初始质心的K-means算法并在风力发电系统的故障诊断应用中获得了良好的效果。展开更多
密度峰值聚类算法(Clustering by fast search and find of density peaks,DPC)的截断距离参数需人工干预,且参数选取对聚类结果产生较大的影响.为解决这一问题,提出了一种基于改进果蝇优化的密度峰值聚类算法.通过Tent混沌映射初始化...密度峰值聚类算法(Clustering by fast search and find of density peaks,DPC)的截断距离参数需人工干预,且参数选取对聚类结果产生较大的影响.为解决这一问题,提出了一种基于改进果蝇优化的密度峰值聚类算法.通过Tent混沌映射初始化果蝇种群,利用Tent混沌序列随机性、遍历性和规律性的特点来提高初始种群的多样性,增强算法的全局探索能力;并引入动态步长因子与柯西变异策略对基本果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)的更新机制进行改进,加强局部勘探能力,帮助算法跳出局部最优;利用随机算法收敛准则从理论上对改进FOA算法的收敛性进行分析;在6个基准测试函数上进行实验仿真,结果表明改进的FOA算法具有更快的收敛速度及更高的求解精度;将改进FOA算法与DPC算法融合成新算法,利用改进FOA算法较强的寻优能力找到最佳截断距离并实现最终的聚类.实验结果表明,新算法在UCI数据集及人工数据集上的聚类性能均有改善,相较于DPC算法、FOA-DPC算法、FADPC算法及ACS-FSDP算法具有更优的性能指标,有效抑制了手动选取截断距离参数带来的影响问题.展开更多
文摘文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC算法对质量特征数据进行聚类分析,将聚类结果作为模型输入训练得到各类超球体中心和决策边界;以此建立基于内核距离的DPC控制图,实现对生产过程质量波动的实时监控;最后将该控制图应用到再制造曲轴生产过程监控中。结果表明,该文提出的DPC控制图可以有效监测再制造曲轴生产过程质量异常波动,验证了该检测方法的可行性和有效性。
文摘针对密度峰值快速搜索聚类(Clustering by fast search and find of density peaks,DPC)算法截断距离dc需手动给出的缺陷,提出了布谷鸟优化的密度峰值快速搜索聚类算法(An Improved Cuckoo Search Optimization-based Density Peak Clustering Algorithm,CS-DPC)。引入余弦相似度原理,将方向与实际距离相结合,更好区分两类簇中间区域数据点的归属度。选择5个人工数据集和3个标准UCI数据集进行了实验仿真。
文摘针对风电系统故障种类多,故障信号数据维数大,诊断正确率低的问题,提出一种利用密度峰值优化初始质心K-means分类算法进行诊断;K-means算法的初始聚类质心是随机选取的,聚类质心选取质量严重影响聚类结果的稳定性,当聚类较大维数的数据时效果很不理想。而CFSFDP( clustering by fast search and find of density peaks)算法对维数较大的数据有良好的聚类能力,但是对于同类多峰的数据,分类效果稳定性变差,总体效果不够理想。为此,综合两种算法的优点,本文提出一种快速密度峰值搜索算法K-CFSFDP( clustering by fast search and find of density peaks)优化初始质心的K-means算法并在风力发电系统的故障诊断应用中获得了良好的效果。
文摘密度峰值聚类算法(Clustering by fast search and find of density peaks,DPC)的截断距离参数需人工干预,且参数选取对聚类结果产生较大的影响.为解决这一问题,提出了一种基于改进果蝇优化的密度峰值聚类算法.通过Tent混沌映射初始化果蝇种群,利用Tent混沌序列随机性、遍历性和规律性的特点来提高初始种群的多样性,增强算法的全局探索能力;并引入动态步长因子与柯西变异策略对基本果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)的更新机制进行改进,加强局部勘探能力,帮助算法跳出局部最优;利用随机算法收敛准则从理论上对改进FOA算法的收敛性进行分析;在6个基准测试函数上进行实验仿真,结果表明改进的FOA算法具有更快的收敛速度及更高的求解精度;将改进FOA算法与DPC算法融合成新算法,利用改进FOA算法较强的寻优能力找到最佳截断距离并实现最终的聚类.实验结果表明,新算法在UCI数据集及人工数据集上的聚类性能均有改善,相较于DPC算法、FOA-DPC算法、FADPC算法及ACS-FSDP算法具有更优的性能指标,有效抑制了手动选取截断距离参数带来的影响问题.