In some schemes, quantum blind signatures require the use of difficult-to-prepare multiparticle entangled states. By considering the communication overhead, quantum operation complexity, verification efficiency and ot...In some schemes, quantum blind signatures require the use of difficult-to-prepare multiparticle entangled states. By considering the communication overhead, quantum operation complexity, verification efficiency and other relevant factors in practical situations, this article proposes a non-entangled quantum blind signature scheme based on dense encoding. The information owner utilizes dense encoding and hash functions to blind the information while reducing the use of quantum resources. After receiving particles, the signer encrypts the message using a one-way function and performs a Hadamard gate operation on the selected single photon to generate the signature. Then the verifier performs a Hadamard gate inverse operation on the signature and combines it with the encoding rules to restore the message and complete the verification.Compared with some typical quantum blind signature protocols, this protocol has strong blindness in privacy protection,and higher flexibility in scalability and application. The signer can adjust the signature operation according to the actual situation, which greatly simplifies the complexity of the signature. By simultaneously utilizing the secondary distribution and rearrangement of non-entangled quantum states, a non-entangled quantum state representation of three bits of classical information is achieved, reducing the use of a large amount of quantum resources and lowering implementation costs. This improves both signature verification efficiency and communication efficiency while, at the same time, this scheme meets the requirements of unforgeability, non-repudiation, and prevention of information leakage.展开更多
5G sets an ambitious goal of increasing the capacity per area of current 4G network by 1000 fold. Due to the high splitting gain of dense small cells, ultra dense network(UDN) is widely considered as a key component i...5G sets an ambitious goal of increasing the capacity per area of current 4G network by 1000 fold. Due to the high splitting gain of dense small cells, ultra dense network(UDN) is widely considered as a key component in achieving this goal. In this paper, we outline the main challenges that come with dense cell deployment, including interference, mobility, power consumption and backhaul. Technologies designed to tackle these challenges in long term evolution system(LTE) and their deficiencies in UDN context are also analyzed. To combat these challenges more efficiently, a series of technologies are introduced along with some of our initial research results. Moreover, the trends of user-centric and peer-to-peer design in UDN are also elaborated.展开更多
This paper proposes an experimentally feasible scheme for implementing quantum dense coding of trapped-ion system in decoherence-free states. As the phase changes due to time evolution of components with different eig...This paper proposes an experimentally feasible scheme for implementing quantum dense coding of trapped-ion system in decoherence-free states. As the phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum dense coding based on this model would be perfect. The scheme is insensitive to heating of vibrational mode and Bell states can be exactly distinguished via detecting the ionic state.展开更多
In this paper, we propose a dual-threshold based secure On-Off transmission scheme, where signals are transmitted only if the channel condition can guarantee secure and reliable communication. First, we present a dyna...In this paper, we propose a dual-threshold based secure On-Off transmission scheme, where signals are transmitted only if the channel condition can guarantee secure and reliable communication. First, we present a dynamic access strategy to increase access efficiency, which provides an access region for the intended user. Then, we propose an emission control policy to transmit signals according to the current channel condition, which declines the influence of channel estimation errors and guarantees qualities of communication links. Furthermore, we give a comprehensive performance analysis for the proposed scheme in terms of connection outage probability(COP) and secrecy outage probability(SOP), and present a dual-threshold optimization model to further support the performance. Numerical results verify that the secure On-Off transmission scheme can increase the system secure energy efficiency and guarantee reliable and secure communication.展开更多
An experimentally feasible protocol for realizing dense coding by using a class of W-state in cavity quantum electrodynamics (QED) is proposed in this paper. The prominent advantage of our scheme is that the success...An experimentally feasible protocol for realizing dense coding by using a class of W-state in cavity quantum electrodynamics (QED) is proposed in this paper. The prominent advantage of our scheme is that the successful probability of the dense coding with a W-class state can reach 1. In addition, the scheme can be implemented by the present cavity QED techniques.展开更多
Following a recent proposal (Phys. Left. A 346 (2005) 330) about quantum dense coding using a tripartite entangled GHZ state and W state, this paper proposes an experimentally feasible scheme for dense coding in c...Following a recent proposal (Phys. Left. A 346 (2005) 330) about quantum dense coding using a tripartite entangled GHZ state and W state, this paper proposes an experimentally feasible scheme for dense coding in cavity QED by using another peculiar tripartite entangled state. In the scheme the atoms interact simultaneously with a highly detuned cavity mode with the assistance of a classical field, the successful probability of dense coding scheme with this peculiar tripartite entangled state equals 1.展开更多
A three- and an (N+ 1)-party dense coding scheme in the case of non-symmetric Hilbert spaces of the particles of a quantum channel are investigated by using a multipartite entangled state. In the case of the (N ...A three- and an (N+ 1)-party dense coding scheme in the case of non-symmetric Hilbert spaces of the particles of a quantum channel are investigated by using a multipartite entangled state. In the case of the (N + 1)-party dense coding scheme, we show that the amount of classical information transmitted from N senders to one receiver is improved.展开更多
The propagation of a normal incident electromagnetic plane wave in a mixture of rare plasma and dense neutral gas is investigated by one dimensional model. The numerical results show that the amplitude of wave electri...The propagation of a normal incident electromagnetic plane wave in a mixture of rare plasma and dense neutral gas is investigated by one dimensional model. The numerical results show that the amplitude of wave electric field is decayed dramatically and its phase is modulated obviously in a distance of a few wave lengthes due to the frequent collisions between electrons and neutrals ( the collision frequency vc is near or even larger than the wave frequency ω0).展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61762039)。
文摘In some schemes, quantum blind signatures require the use of difficult-to-prepare multiparticle entangled states. By considering the communication overhead, quantum operation complexity, verification efficiency and other relevant factors in practical situations, this article proposes a non-entangled quantum blind signature scheme based on dense encoding. The information owner utilizes dense encoding and hash functions to blind the information while reducing the use of quantum resources. After receiving particles, the signer encrypts the message using a one-way function and performs a Hadamard gate operation on the selected single photon to generate the signature. Then the verifier performs a Hadamard gate inverse operation on the signature and combines it with the encoding rules to restore the message and complete the verification.Compared with some typical quantum blind signature protocols, this protocol has strong blindness in privacy protection,and higher flexibility in scalability and application. The signer can adjust the signature operation according to the actual situation, which greatly simplifies the complexity of the signature. By simultaneously utilizing the secondary distribution and rearrangement of non-entangled quantum states, a non-entangled quantum state representation of three bits of classical information is achieved, reducing the use of a large amount of quantum resources and lowering implementation costs. This improves both signature verification efficiency and communication efficiency while, at the same time, this scheme meets the requirements of unforgeability, non-repudiation, and prevention of information leakage.
文摘5G sets an ambitious goal of increasing the capacity per area of current 4G network by 1000 fold. Due to the high splitting gain of dense small cells, ultra dense network(UDN) is widely considered as a key component in achieving this goal. In this paper, we outline the main challenges that come with dense cell deployment, including interference, mobility, power consumption and backhaul. Technologies designed to tackle these challenges in long term evolution system(LTE) and their deficiencies in UDN context are also analyzed. To combat these challenges more efficiently, a series of technologies are introduced along with some of our initial research results. Moreover, the trends of user-centric and peer-to-peer design in UDN are also elaborated.
基金Project supported by the Important Program of Hunan Provincial Education Department (Grant No 06A038)Department of Education of Hunan Province (Grant No 06C080)Hunan Provincial Natural Science Foundation,China (Grant No 06JJ4003)
文摘This paper proposes an experimentally feasible scheme for implementing quantum dense coding of trapped-ion system in decoherence-free states. As the phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum dense coding based on this model would be perfect. The scheme is insensitive to heating of vibrational mode and Bell states can be exactly distinguished via detecting the ionic state.
基金supported in part by National Natural Science Foundation of China under Grants No. 61871404, 61401510, 61521003, 61501516
文摘In this paper, we propose a dual-threshold based secure On-Off transmission scheme, where signals are transmitted only if the channel condition can guarantee secure and reliable communication. First, we present a dynamic access strategy to increase access efficiency, which provides an access region for the intended user. Then, we propose an emission control policy to transmit signals according to the current channel condition, which declines the influence of channel estimation errors and guarantees qualities of communication links. Furthermore, we give a comprehensive performance analysis for the proposed scheme in terms of connection outage probability(COP) and secrecy outage probability(SOP), and present a dual-threshold optimization model to further support the performance. Numerical results verify that the secure On-Off transmission scheme can increase the system secure energy efficiency and guarantee reliable and secure communication.
基金supported by the National Natural Science Foundation of China (Grant No 10674001)the Program of Education Department of Anhui University of China (Grant No KJ2007A002)the Youth Program of Fuyang Normal College of China (Grant No 2005LQ04)
文摘An experimentally feasible protocol for realizing dense coding by using a class of W-state in cavity quantum electrodynamics (QED) is proposed in this paper. The prominent advantage of our scheme is that the successful probability of the dense coding with a W-class state can reach 1. In addition, the scheme can be implemented by the present cavity QED techniques.
基金Project supported by Youth Foundation of Hubei Province, China (Grant No 2004Q001), the Key Program of Hubei Province, China (Grant No Z20052201) and Natural Science Foundation of Hubei Province, China (Grant No 2006ABA055).
文摘Following a recent proposal (Phys. Left. A 346 (2005) 330) about quantum dense coding using a tripartite entangled GHZ state and W state, this paper proposes an experimentally feasible scheme for dense coding in cavity QED by using another peculiar tripartite entangled state. In the scheme the atoms interact simultaneously with a highly detuned cavity mode with the assistance of a classical field, the successful probability of dense coding scheme with this peculiar tripartite entangled state equals 1.
文摘A three- and an (N+ 1)-party dense coding scheme in the case of non-symmetric Hilbert spaces of the particles of a quantum channel are investigated by using a multipartite entangled state. In the case of the (N + 1)-party dense coding scheme, we show that the amount of classical information transmitted from N senders to one receiver is improved.
文摘The propagation of a normal incident electromagnetic plane wave in a mixture of rare plasma and dense neutral gas is investigated by one dimensional model. The numerical results show that the amplitude of wave electric field is decayed dramatically and its phase is modulated obviously in a distance of a few wave lengthes due to the frequent collisions between electrons and neutrals ( the collision frequency vc is near or even larger than the wave frequency ω0).