期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
基于ResUNet和Dense CRF模型的地震裂缝识别方法 被引量:2
1
作者 杜承泽 段友祥 孙歧峰 《应用科学学报》 CAS CSCD 北大核心 2021年第3期367-377,共11页
针对人工解释地震资料耗时长、效率低、受主观因素影响较大的不足,提出了一种基于ResUNet和全连接条件随机场(dense conditional random field, Dense CRF)模型的裂缝识别方法。该方法首先使用ResUNet模型提取地震振幅数据体中裂缝的不... 针对人工解释地震资料耗时长、效率低、受主观因素影响较大的不足,提出了一种基于ResUNet和全连接条件随机场(dense conditional random field, Dense CRF)模型的裂缝识别方法。该方法首先使用ResUNet模型提取地震振幅数据体中裂缝的不同分辨率的特征,实现地震裂缝识别;然后利用Dense CRF模型进一步优化识别结果,从而实现地震裂缝的精准识别。将该方法与传统UNet、ResUNet模型在合成地震振幅数据体和F3工区地震数据体进行了实验比较,结果表明运用所提方法识别的裂缝更准确、裂缝尺寸更细、连续性更好。 展开更多
关键词 三维地震数据集 裂缝识别 深度学习 ResUNet神经网络模型 dense crf模型
在线阅读 下载PDF
基于SVM和CRF的双层模型中文机构名识别 被引量:13
2
作者 黄德根 李泽中 万如 《大连理工大学学报》 EI CAS CSCD 北大核心 2010年第5期782-787,共6页
提出了一种基于支持向量机(SVM)和条件随机场(CRF)的双层模型进行中文机构名识别的方法.第一层模型采用CRF识别简单机构名,并将识别结果传至第二层辅助下一步的识别;第二层采用基于驱动的方法,将SVM和CRF结合进行复杂机构名的识别;最后... 提出了一种基于支持向量机(SVM)和条件随机场(CRF)的双层模型进行中文机构名识别的方法.第一层模型采用CRF识别简单机构名,并将识别结果传至第二层辅助下一步的识别;第二层采用基于驱动的方法,将SVM和CRF结合进行复杂机构名的识别;最后将两层的识别结果合并,并通过一个后续处理对置信度较低的识别结果进行修正.大规模真实语料的开放测试表明,精确率达到94.83%,召回率达到95.02%,证明了该方法的有效性. 展开更多
关键词 机构名识别 条件随机场(crf) 支持向量机(SVM) 双层模型
在线阅读 下载PDF
基于ALBERT-BGRU-CRF的中文命名实体识别方法 被引量:18
3
作者 李军怀 陈苗苗 +2 位作者 王怀军 崔颖安 张爱华 《计算机工程》 CAS CSCD 北大核心 2022年第6期89-94,106,共7页
命名实体识别是知识图谱构建、搜索引擎、推荐系统等上层自然语言处理任务的重要基础,中文命名实体识别是对一段文本序列中的专有名词或特定命名实体进行标注分类。针对现有中文命名实体识别方法无法有效提取长距离语义信息及解决一词... 命名实体识别是知识图谱构建、搜索引擎、推荐系统等上层自然语言处理任务的重要基础,中文命名实体识别是对一段文本序列中的专有名词或特定命名实体进行标注分类。针对现有中文命名实体识别方法无法有效提取长距离语义信息及解决一词多义的问题,提出一种基于ALBERT-双向门控循环单元(BGRU)-条件随机场(CRF)模型的中文命名实体识别方法。使用ALBERT预训练语言模型对输入文本进行词嵌入获取动态词向量,有效解决了一词多义的问题。采用BGRU提取上下文语义特征进一步理解语义,获取长距离词之间的语义特征。将拼接后的向量输入至CRF层并利用维特比算法解码,降低错误标签输出概率。最终得到实体标注信息,实现中文命名实体识别。实验结果表明,ALBERT-BGRU-CRF模型在MSRA语料库上的中文命名实体识别准确率和召回率分别达到95.16%和94.58%,同时相比于片段神经网络模型和CNN-BiLSTM-CRF模型的F1值提升了4.43和3.78个百分点。 展开更多
关键词 命名实体识别 预训练语言模型 双向门控循环单元 条件随机场 词向量 深度学习
在线阅读 下载PDF
整合BiLSTM-CRF网络和词典资源的中文电子病历实体识别 被引量:34
4
作者 李纲 潘荣清 +1 位作者 毛进 操玉杰 《现代情报》 CSSCI 2020年第4期3-12,58,共11页
[目的/意义]通过整合BiLSTM-CRF神经网络和具有先验领域知识的词典资源,提高中文电子病历领域中的实体识别效果。[方法/过程]采用BiLSTM-CRF神经网络模型,以CCKS-2017测评任务提供的脱敏中文电子病历数据为实验数据集,结合Word2Vec和外... [目的/意义]通过整合BiLSTM-CRF神经网络和具有先验领域知识的词典资源,提高中文电子病历领域中的实体识别效果。[方法/过程]采用BiLSTM-CRF神经网络模型,以CCKS-2017测评任务提供的脱敏中文电子病历数据为实验数据集,结合Word2Vec和外部词典构造神经网络的词嵌入输入改进实体识别模型。[结果/结论]与传统的CRF和单纯的BiLSTM-CRF模型相比,引入先验知识的词典资源可以取得更好的实体识别效果,F1值达到最高的90.41%。深度学习模型BiLSTM-CRF能够显著提升传统CRF方法的实体识别效果,同时先验的词典知识能进一步增强神经网络的性能。 展开更多
关键词 实体识别 长短期记忆网络 条件随机场 电子病历 词典资源 深度学习 BiLSTM-crf神经网络模型
在线阅读 下载PDF
基于改进Bi-LSTM-CRF的农业问答系统研究 被引量:12
5
作者 白皓然 孙伟浩 +1 位作者 金宁 马皓冉 《中国农机化学报》 北大核心 2023年第2期99-105,共7页
针对农业领域问答系统面临的实体识别困难的问题,提出一种基于改进Bi-LSTM-CRF的实体识别方法。首先通过BERT预训练模型的预处理,生成基于上下文信息的词向量,然后将训练出的词向量输入Bi-LSTM-CRF做进一步的训练处理,最后,利用Python的... 针对农业领域问答系统面临的实体识别困难的问题,提出一种基于改进Bi-LSTM-CRF的实体识别方法。首先通过BERT预训练模型的预处理,生成基于上下文信息的词向量,然后将训练出的词向量输入Bi-LSTM-CRF做进一步的训练处理,最后,利用Python的Django框架设计农业领域的实体识别、实体查询、农知问答等子系统。经过试验对比,所提出的改进的Bi-LSTM-CRF在农业信息领域具有更好的实体识别能力,在农业信息语料库上的精确率、召回率和F1值分别为93.23%、91.08%和92.16%。实现农业领域实体识别和农业信息问答的知识图谱网站演示,对农业信息化的发展具有重要意义。 展开更多
关键词 智能问答系统 知识图谱 双向长短期记忆模型(Bi-LSTM) 条件随机场(crf)
在线阅读 下载PDF
基于CRF的百科全书文本段落划分 被引量:3
6
作者 许勇 宋柔 《计算机工程》 CAS CSCD 北大核心 2007年第10期16-18,共3页
CRF模型是标注、切分序列数据的较新的概率模型,在信息抽取等文本处理领域广受关注。该文介绍了CRF方法,并将其应用到百科全书文本段落的划分上,利用CRF的特征表述机制加入了文本单元序列中的长距离约束,取得了比传统的隐马尔科夫方法... CRF模型是标注、切分序列数据的较新的概率模型,在信息抽取等文本处理领域广受关注。该文介绍了CRF方法,并将其应用到百科全书文本段落的划分上,利用CRF的特征表述机制加入了文本单元序列中的长距离约束,取得了比传统的隐马尔科夫方法更好的结果。 展开更多
关键词 文本段落划分 条件随机域模型 隐马尔科夫模型
在线阅读 下载PDF
基于CRF和错误驱动的中心词识别 被引量:3
7
作者 田卫东 李亚娟 《计算机应用研究》 CSCD 北大核心 2013年第8期2345-2348,共4页
针对中文问题分类的中心词识别不准确的问题,提出了一种基于条件随机场(CRF)和错误驱动学习相结合的识别方法。该方法采用CRF模型对问题的中心词进行初始标注,依据词的上下文信息用错误驱动的学习方法对其标注结果进行纠正。在训练有序... 针对中文问题分类的中心词识别不准确的问题,提出了一种基于条件随机场(CRF)和错误驱动学习相结合的识别方法。该方法采用CRF模型对问题的中心词进行初始标注,依据词的上下文信息用错误驱动的学习方法对其标注结果进行纠正。在训练有序规则的过程中,为了减少训练时间,结合中心词的特点对错误驱动算法进行了改进。实验结果表明,该方法在一定程度上提高了中心词的标注精度,达到88%。 展开更多
关键词 问题分类 中心词 条件随机场(crf) 错误驱动学习(TBL) 上下文信息 有序规则
在线阅读 下载PDF
基于双向长短时记忆网络的地铁应急知识抽取与推理
8
作者 叶雨涛 王鹏玲 +2 位作者 徐瑞华 肖晓芳 葛健豪 《同济大学学报(自然科学版)》 北大核心 2025年第3期420-429,共10页
为解决文本类地铁应急处置流程存在的流程顺序关系不明确、流程执行人员模糊等问题,提出了基于BiLSTM-CRF(Bidirectional Long Short-Term Memory-Conditional Random Field)的地铁应急处置知识抽取与推理方法。首先,利用BiLSTM-CRF方... 为解决文本类地铁应急处置流程存在的流程顺序关系不明确、流程执行人员模糊等问题,提出了基于BiLSTM-CRF(Bidirectional Long Short-Term Memory-Conditional Random Field)的地铁应急处置知识抽取与推理方法。首先,利用BiLSTM-CRF方法对地铁应急处置流程的文本资料进行命名实体识别,完成文本资料的知识抽取;其次,选用TransD模型对识别后实体数据进行知识推理,从而完成以实体和属性对为节点、关系对为边的知识图谱构建;最后,利用Neo4j图数据库对构建的地铁应急处置流程知识图谱进行了可视化展示和案例分析。研究结果表明,基于BiLSTM-CRF的知识抽取模型的精确率、召回率和F1值均达到了90%以上,且基于BiLSTM-CRF的TransD模型的推理结果准确率提升了22.92%,保证了知识图谱构建的准确性,可为地铁应急管理提供决策支持。 展开更多
关键词 地铁应急处置 知识图谱 条件随机场的双向长短时网络 TransD模型 知识抽取
在线阅读 下载PDF
机床夹具设计知识图谱构建及应用
9
作者 张称心 孙家盛 段阳 《机电工程》 北大核心 2025年第1期106-116,共11页
针对目前机床夹具设计领域中存在的知识挖掘深度不足、利用率不高且过度依赖设计人员经验等问题,提出了一种基于自顶向下方式的机床夹具设计知识图谱构建方法。首先,将机床夹具设计知识分为原理规则类和功能描述类,利用本体建模语言(OWL... 针对目前机床夹具设计领域中存在的知识挖掘深度不足、利用率不高且过度依赖设计人员经验等问题,提出了一种基于自顶向下方式的机床夹具设计知识图谱构建方法。首先,将机床夹具设计知识分为原理规则类和功能描述类,利用本体建模语言(OWL)对这两类知识进行了本体建模,构建了知识图谱的模式层;其次,在模式层的指导下,以机床夹具设计原理规则文档和设计实例为数据源,利用双向长短期记忆网络-条件随机场算法(BiLSTM-CRF)对其进行了知识抽取,得到了结构化的机床夹具设计知识;然后,运用Neo4j图数据库存储结构化的机床夹具设计知识,得到了知识图谱的数据层;最后,以轴承套筒法兰的夹具设计为例,对该方法的可行性进行了验证;考虑到企业对同一夹具结构的不同技术需求,提出了一种基于图形数据科学算法(GDS)的相似元件替代法,对夹具知识图谱中47个定位元件节点进行了相似度计算,得到了1081条相似度数据样本,并构建了综合评判模型。研究结果表明:当相似度阈值设置为0.76时,将定位元件进行替换的精确率达到了84%。通过建立知识图谱,完成了机床夹具设计的两类知识的有效关联,为构建数据驱动的机床夹具智能设计奠定了基础。 展开更多
关键词 机械设计 智能设计 知识图谱 知识抽取 知识融合 本体建模语言 双向长短期记忆网络-条件随机场算法 图形数据科学算法
在线阅读 下载PDF
基于CFAR-DCRF红外遥感舰船单帧目标检测方法 被引量:7
10
作者 宋文韬 胡勇 +3 位作者 匡定波 巩彩兰 张文奇 黄硕 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2019年第4期520-527,共8页
针对红外舰船小目标图像复杂背景弱信号虚警率较高且难以被精确检测的问题提出了一种恒虚警率(Constant False Alarm Rate CFAR)全连接条件随机场(Dense Conditional Random Fields DCRF)舰船目标检测算法.该算法针对小目标与虚警信号... 针对红外舰船小目标图像复杂背景弱信号虚警率较高且难以被精确检测的问题提出了一种恒虚警率(Constant False Alarm Rate CFAR)全连接条件随机场(Dense Conditional Random Fields DCRF)舰船目标检测算法.该算法针对小目标与虚警信号变化特征相似但结构特征不同的特点利用CRF的多维上下文(空间、辐射)表达的优势实现虚警特征抑制并引入 CFAR 对模型进行改进提高了 DCRF 对于弱信号目标的检出能力实现舰船小目标的精确检测与分割.实验结果表明该算法能够充分利用海域的全局上下文信息能够在保持较高检出率同时有效降低虚警率实现单帧端到端的小目标检测. 展开更多
关键词 遥感 全连接条件随机场 红外小目标 恒虚警率
在线阅读 下载PDF
基于CRFs和歧义模型的越南语分词 被引量:2
11
作者 熊明明 李英 +2 位作者 郭剑毅 毛存礼 余正涛 《数据采集与处理》 CSCD 北大核心 2017年第3期636-642,共7页
通过对越南语词法特点的研究,把越南语的基本特征融入到条件随机场中(Condition random fields,CRFs),提出了一种基于CRFs和歧义模型的越南语分词方法。通过机器标注、人工校对的方式获取了25 981条越南语分词语料作为CRFs的训练语料。... 通过对越南语词法特点的研究,把越南语的基本特征融入到条件随机场中(Condition random fields,CRFs),提出了一种基于CRFs和歧义模型的越南语分词方法。通过机器标注、人工校对的方式获取了25 981条越南语分词语料作为CRFs的训练语料。越南语中交叉歧义广泛分布在句子中,为了克服交叉歧义的影响,通过词典的正向和逆向匹配算法从训练语料中抽取了5 377条歧义片段,并通过最大熵模型训练得到一个歧义模型,并融入到分词模型中。把训练语料均分为10份做交叉验证实验,分词准确率达到了96.55%。与已有越南语分词工具VnTokenizer比较,实验结果表明该方法提高了越南语分词的准确率、召回率和F值。 展开更多
关键词 条件随机场模型 越南语分词 词法 基本特征 最大熵 歧义模型
在线阅读 下载PDF
基于BERT-CRF模型的中文事件检测方法研究 被引量:22
12
作者 田梓函 李欣 《计算机工程与应用》 CSCD 北大核心 2021年第11期135-139,共5页
事件抽取是自然语言处理中信息抽取的关键任务之一。事件检测是事件抽取的第一步,事件检测的目标是识别事件中的触发词并为其分类。现有的中文事件检测存在由于分词造成的误差传递,导致触发词提取不准确。将中文事件检测看作序列标注任... 事件抽取是自然语言处理中信息抽取的关键任务之一。事件检测是事件抽取的第一步,事件检测的目标是识别事件中的触发词并为其分类。现有的中文事件检测存在由于分词造成的误差传递,导致触发词提取不准确。将中文事件检测看作序列标注任务,提出一种基于预训练模型与条件随机场相结合的事件检测模型,采用BIO标注方法对数据进行标注,将训练数据通过预训练模型BERT得到基于远距离的动态字向量的触发词特征,通过条件随机场CRF对触发词进行分类。在ACE2005中文数据集上的实验表明,提出的中文事件检测模型与现有模型相比,准确率、召回率与F1值都有提升。 展开更多
关键词 中文事件检测 预训练模型 条件随机场(crf)
在线阅读 下载PDF
基于BiLSTM-CRF的商情实体识别模型 被引量:42
13
作者 张应成 杨洋 +3 位作者 蒋瑞 全兵 张利君 任晓雷 《计算机工程》 CAS CSCD 北大核心 2019年第5期308-314,共7页
结合语言模型条件随机场(CRF)和双向长短时记忆(BiLSTM)网络,构建一种BiLSTM-CRF模型,以提取商情文本序列中的招标人、招标代理以及招标编号3类实体信息。将规范化后的招标文本序列按字进行向量化,利用BiLSTM神经网络获取序列化文本的... 结合语言模型条件随机场(CRF)和双向长短时记忆(BiLSTM)网络,构建一种BiLSTM-CRF模型,以提取商情文本序列中的招标人、招标代理以及招标编号3类实体信息。将规范化后的招标文本序列按字进行向量化,利用BiLSTM神经网络获取序列化文本的前向、后向文本特征,并通过CRF提取出双向本文特征中相应的实体。实验结果表明,与传统机器学习算法CRF相比,该模型3类实体的精确率、召回率和F1值平均提升15.21%、12.06%和13.70%。 展开更多
关键词 条件随机场 双向长短时记忆网络 语言模型 命名实体识别 深度学习
在线阅读 下载PDF
基于CRF和HMM混合模型的手势识别方法 被引量:3
14
作者 蔡旻 高涵文 +1 位作者 李华一 陶重犇 《计算机应用与软件》 北大核心 2021年第11期162-166,共5页
针对训练数据较少的小样本情况下,使用隐马尔可夫模型(HMM)的建模准确性较低的问题,提出一种基于条件随机场(CRF)和HMM混合模型的手势识别方法。用一个区分局部观测值的判别模型来提供与序列中的每个局部观测相关联的局部后验。将CRF用... 针对训练数据较少的小样本情况下,使用隐马尔可夫模型(HMM)的建模准确性较低的问题,提出一种基于条件随机场(CRF)和HMM混合模型的手势识别方法。用一个区分局部观测值的判别模型来提供与序列中的每个局部观测相关联的局部后验。将CRF用于执行这种判别层。通过区分局部观察值来为HMM层提供局部类后验。在HMM解码阶段将这些局部后验组合在一起提供更多的全局信息。通过实际手势识别实验验证了融合HMM建模能力和CRF判别能力的混合模型方法的有效性与准确性,并对不同的可变性来源具有鲁棒性。 展开更多
关键词 手势识别 隐马尔可夫模型 条件随机场 混合模型
在线阅读 下载PDF
基于XLNET模型的开阳磷矿成矿条件相关地质实体识别与应用
15
作者 彭彬 田宜平 +2 位作者 曾斌 吴雪超 吴文明 《地质科技通报》 CAS CSCD 北大核心 2024年第4期224-234,共11页
随着磷矿找矿难度越来越大,地质勘探成果报告也愈来愈多,通过人工识别海量文档中与磷矿成矿相关地质信息耗时低效,无法满足知识共享传播和地质报告智能管理的需求。为快速获得磷矿地质文档报告中隐藏的成矿地质知识,基于XLNET模型建立... 随着磷矿找矿难度越来越大,地质勘探成果报告也愈来愈多,通过人工识别海量文档中与磷矿成矿相关地质信息耗时低效,无法满足知识共享传播和地质报告智能管理的需求。为快速获得磷矿地质文档报告中隐藏的成矿地质知识,基于XLNET模型建立了磷矿成矿地质实体自动识别的方法。首先对实体进行BIO标注建立地质实体字典,利用XLNET作为底层预处理模型学习句子双向语义;然后使用BILSTM-Attention-CRF模型实现文本多标签的智能分类;最后通过定位磷矿实体在报告中的分布位置大致推测该处磷矿成矿条件和成矿模式。将该模型与其余3种模型比较得出结果,该模型识别的准确率(P)、召回率(R)及F1值都接近了90%,较前3种模型分别调高了2%,5%,6%。该研究为开阳磷矿地质研究人员提供了更加高效的地质实体自动识别的方法。 展开更多
关键词 地质实体识别 XLNET-BILSTM-Attention-crf 磷矿成矿模式 预训练模型 序列标注
在线阅读 下载PDF
面向行政执法案件文本的事件抽取研究
16
作者 屈潇雅 李兵 温立强 《计算机工程》 CAS CSCD 北大核心 2024年第9期63-71,共9页
行政执法的智能化水平是国家治理能力现代化的体现,数据是智能化发展的重要依托。在行政执法领域,各行政机关存储大量以文本形式记录的历史案件,这种非结构化的数据价值密度较低、可利用性不强。利用事件抽取技术从行政执法案件文本中... 行政执法的智能化水平是国家治理能力现代化的体现,数据是智能化发展的重要依托。在行政执法领域,各行政机关存储大量以文本形式记录的历史案件,这种非结构化的数据价值密度较低、可利用性不强。利用事件抽取技术从行政执法案件文本中快速高效地抽取案件职权类型、案发时间、案发地点等结构化信息,可推动行政机关对历史案件信息的利用和智能化执法办案研究。收集整理某城市的真实案例数据,并通过人工标注构建一个行政执法领域的数据集,根据行政执法案件文本的无触发词、文档级、格式不固定等文本特征,提出结合基于Transformer的双向编码器表示(BERT)和基于条件随机场的双向长短期记忆网络(BiLSTM-CRF)模型的两阶段事件抽取方法,通过文本多分类和序列标注依次完成事件类型检测和事件论元抽取任务。实验结果表明,事件类型检测任务的F1值达到99.54%,事件论元抽取任务的F1值达到97.36%,实现了对案件信息的有效抽取。 展开更多
关键词 行政执法案件 事件抽取 两阶段方法 基于Transformer的双向编码器表示模型 基于条件随机场的双向长短期记忆网络(BiLSTM-crf)模型
在线阅读 下载PDF
基于条件随机域的生物命名实体识别 被引量:18
17
作者 彭春艳 张晖 +1 位作者 包玲玉 陈昌平 《计算机工程》 CAS CSCD 北大核心 2009年第22期197-199,共3页
提出一种基于条件随机域模型的生物命名实体识别方法,结合单词构词特性以及距离依赖特性,在JNLPBA的GENIAV3.02数据上进行实验,测试结果表明,引入距离依赖后,系统的识别性能比只利用单特性的条件随机域方法提高2.54%,可获得较好的识别效... 提出一种基于条件随机域模型的生物命名实体识别方法,结合单词构词特性以及距离依赖特性,在JNLPBA的GENIAV3.02数据上进行实验,测试结果表明,引入距离依赖后,系统的识别性能比只利用单特性的条件随机域方法提高2.54%,可获得较好的识别效果,提高了系统的识别效率。 展开更多
关键词 生物命名实体识别 条件随机域 隐马尔科夫模型
在线阅读 下载PDF
基于全卷积网络和条件随机场的宫颈癌细胞学图像的细胞核分割 被引量:9
18
作者 刘一鸣 张鹏程 +1 位作者 刘祎 桂志国 《计算机应用》 CSCD 北大核心 2018年第11期3348-3354,共7页
针对宫颈癌细胞学筛查中由于宫颈细胞核形状复杂多样等因素而导致分割不够精确的问题,提出了一种结合了全卷积网络(FCN)和全连接条件随机场(CRF)的细胞核分割方法。首先,根据Herlev数据集的特点搭建微型全卷积网络(T-FCN),利用细胞核区... 针对宫颈癌细胞学筛查中由于宫颈细胞核形状复杂多样等因素而导致分割不够精确的问题,提出了一种结合了全卷积网络(FCN)和全连接条件随机场(CRF)的细胞核分割方法。首先,根据Herlev数据集的特点搭建微型全卷积网络(T-FCN),利用细胞核区域像素级别的类别先验信息,自主学习多层次特征来获取细胞核的粗分割结果;然后,通过最小化包含有整幅细胞图像中所有像素类别、像素色彩值与位置等信息的全连接CRF的能量函数来剔除粗分割结果中微小的误分割,并细化分割边缘。在Herlev数据集上的实验结果显示,提出的方法在查准率(Precision)、查全率(Recall)与Zijdenbos相似性指数(ZSI)上均有高于0.9的表现,表明得到的细胞核分割结果与其真实轮廓高度匹配,分割精确。相较于传统方法中对异常细胞核的分割精度较正常细胞核低的情况,提出的方法在异常细胞核的分割指标上普遍优于正常细胞核。 展开更多
关键词 全卷积网络 密集条件随机场 细胞核分割 巴氏涂片
在线阅读 下载PDF
融合规则与统计的微博新词发现方法 被引量:16
19
作者 周霜霜 徐金安 +1 位作者 陈钰枫 张玉洁 《计算机应用》 CSCD 北大核心 2017年第4期1044-1050,共7页
结合微博新词的构词规则自由度大和极其复杂的特点,针对传统的C/NC-value方法抽取的结果新词边界的识别准确率不高,以及低频微博新词无法正确识别的问题,提出了一种融合人工启发式规则、C/NC-value改进算法和条件随机场(CRF)模型的微博... 结合微博新词的构词规则自由度大和极其复杂的特点,针对传统的C/NC-value方法抽取的结果新词边界的识别准确率不高,以及低频微博新词无法正确识别的问题,提出了一种融合人工启发式规则、C/NC-value改进算法和条件随机场(CRF)模型的微博新词抽取方法。一方面,人工启发式规则是指对微博新词的分类和归纳总结,并从微博新词构词的词性(POS)、字符类别和表意符号等角度设计的微博新词的构词规则;另一方面,改进的C/NC-value方法通过引入词频、邻接熵和互信息等统计量来重构NC-value目标函数,并使用CRF模型训练和识别新词,最终达到提高新词边界识别准确率和低频新词识别精度的目的。实验结果显示,与传统方法相比,所提出的方法能有效地提高微博新词识别的F值。 展开更多
关键词 微博新词 构词规则 统计量特征 C/NC-value方法 条件随机场模型
在线阅读 下载PDF
基于改进的U-Net肺结节分割方法研究 被引量:8
20
作者 苗语 丰振航 +2 位作者 杨华民 蒋振刚 师为礼 《计算机应用与软件》 北大核心 2021年第12期213-219,共7页
由于肺部CT图像的特征信息复杂程度高,经典U型卷积网络对肺结节分割存在准确率较低和误分割等问题。针对这一问题,提出一种改进的U型卷积网络模型。该模型将U-Net网络和DenseNet网络融合,将解码器浅层特征连接至深层特征来增强特征的复... 由于肺部CT图像的特征信息复杂程度高,经典U型卷积网络对肺结节分割存在准确率较低和误分割等问题。针对这一问题,提出一种改进的U型卷积网络模型。该模型将U-Net网络和DenseNet网络融合,将解码器浅层特征连接至深层特征来增强特征的复用性。通过U-Net网络与卷积条件随机场(ConvCRF)的端到端结合训练来增强边缘特征,解决了边界模糊的问题。提出一种改进的focal loss损失函数,该函数提高了结节所占的权重,解决了正负样本不平衡的问题。在LUNA16数据集中作对比实验验证了模型的性能,分割精准度达到0.9374,敏感度为0.941,该结果证明了改进模型在肺结节分割中更优。 展开更多
关键词 肺结节分割 U型卷积网络 密集连接 损失函数 卷积条件随机场
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部