为解决文本类地铁应急处置流程存在的流程顺序关系不明确、流程执行人员模糊等问题,提出了基于BiLSTM-CRF(Bidirectional Long Short-Term Memory-Conditional Random Field)的地铁应急处置知识抽取与推理方法。首先,利用BiLSTM-CRF方...为解决文本类地铁应急处置流程存在的流程顺序关系不明确、流程执行人员模糊等问题,提出了基于BiLSTM-CRF(Bidirectional Long Short-Term Memory-Conditional Random Field)的地铁应急处置知识抽取与推理方法。首先,利用BiLSTM-CRF方法对地铁应急处置流程的文本资料进行命名实体识别,完成文本资料的知识抽取;其次,选用TransD模型对识别后实体数据进行知识推理,从而完成以实体和属性对为节点、关系对为边的知识图谱构建;最后,利用Neo4j图数据库对构建的地铁应急处置流程知识图谱进行了可视化展示和案例分析。研究结果表明,基于BiLSTM-CRF的知识抽取模型的精确率、召回率和F1值均达到了90%以上,且基于BiLSTM-CRF的TransD模型的推理结果准确率提升了22.92%,保证了知识图谱构建的准确性,可为地铁应急管理提供决策支持。展开更多
通过对越南语词法特点的研究,把越南语的基本特征融入到条件随机场中(Condition random fields,CRFs),提出了一种基于CRFs和歧义模型的越南语分词方法。通过机器标注、人工校对的方式获取了25 981条越南语分词语料作为CRFs的训练语料。...通过对越南语词法特点的研究,把越南语的基本特征融入到条件随机场中(Condition random fields,CRFs),提出了一种基于CRFs和歧义模型的越南语分词方法。通过机器标注、人工校对的方式获取了25 981条越南语分词语料作为CRFs的训练语料。越南语中交叉歧义广泛分布在句子中,为了克服交叉歧义的影响,通过词典的正向和逆向匹配算法从训练语料中抽取了5 377条歧义片段,并通过最大熵模型训练得到一个歧义模型,并融入到分词模型中。把训练语料均分为10份做交叉验证实验,分词准确率达到了96.55%。与已有越南语分词工具VnTokenizer比较,实验结果表明该方法提高了越南语分词的准确率、召回率和F值。展开更多
文摘为解决文本类地铁应急处置流程存在的流程顺序关系不明确、流程执行人员模糊等问题,提出了基于BiLSTM-CRF(Bidirectional Long Short-Term Memory-Conditional Random Field)的地铁应急处置知识抽取与推理方法。首先,利用BiLSTM-CRF方法对地铁应急处置流程的文本资料进行命名实体识别,完成文本资料的知识抽取;其次,选用TransD模型对识别后实体数据进行知识推理,从而完成以实体和属性对为节点、关系对为边的知识图谱构建;最后,利用Neo4j图数据库对构建的地铁应急处置流程知识图谱进行了可视化展示和案例分析。研究结果表明,基于BiLSTM-CRF的知识抽取模型的精确率、召回率和F1值均达到了90%以上,且基于BiLSTM-CRF的TransD模型的推理结果准确率提升了22.92%,保证了知识图谱构建的准确性,可为地铁应急管理提供决策支持。
文摘通过对越南语词法特点的研究,把越南语的基本特征融入到条件随机场中(Condition random fields,CRFs),提出了一种基于CRFs和歧义模型的越南语分词方法。通过机器标注、人工校对的方式获取了25 981条越南语分词语料作为CRFs的训练语料。越南语中交叉歧义广泛分布在句子中,为了克服交叉歧义的影响,通过词典的正向和逆向匹配算法从训练语料中抽取了5 377条歧义片段,并通过最大熵模型训练得到一个歧义模型,并融入到分词模型中。把训练语料均分为10份做交叉验证实验,分词准确率达到了96.55%。与已有越南语分词工具VnTokenizer比较,实验结果表明该方法提高了越南语分词的准确率、召回率和F值。