The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditi...The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditions.In this work,considering the different combinations of confining pressure and bedding plane inclination angle(α),biaxial mechanical loading experiments were conducted on shale containing circular holes.The research results indicate that the confining pressure and inclination angle of the bedding planes significantly influence the failure patterns of shale containing circular holes.The instability of shale containing circular holes can be classified into five types:tensile failure along the bedding planes,tensile failure through the bedding planes,shear slip along the bedding planes,shear failure through the bedding planes,and block instability failure.Furthermore,the evolution of strain and stress fields around the circular holes was found to be the fundamental cause of variations in the initiation characteristics and locations of shale cracks.The crack initiation criterion for shale containing circular hole was established,providing a new method for evaluating the trajectory of shale hole wall fractures.This study holds significant importance for evaluating the evolution and stability of fracture networks within shale reservoirs.展开更多
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ...This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.展开更多
The algorithm of dense spectrum correction has been raised and proved based on the correction of discrete spectrum by fast Fourier transform.The result of simulation shows that such algorithm has advantages of high ac...The algorithm of dense spectrum correction has been raised and proved based on the correction of discrete spectrum by fast Fourier transform.The result of simulation shows that such algorithm has advantages of high accuracy and small amount of calculation.The algorithm has been successfully applied to the analysis of vibration signals from internal combustion engine.To calculate discrete spectrum,fast Fourier transform has been used to calculate the discrete spectrum by the signals acquired by the sensors on the oil pan,and the signal has been extracted from the mixed signals.展开更多
Cotton is one of the most important economic crops in the world,and it provides natural fiber for the textile industry.With the advancement of the textile technology and increased consumption demands on cotton fiber,b...Cotton is one of the most important economic crops in the world,and it provides natural fiber for the textile industry.With the advancement of the textile technology and increased consumption demands on cotton fiber,both cotton yield and quality should be enhanced.However,cotton yield展开更多
The mechanism of beneficiation with air dense fluidized bed has been theoretically studied in the paper. Focusing attention on the misplacing resources in separation process, the misplacing effects are divided into t...The mechanism of beneficiation with air dense fluidized bed has been theoretically studied in the paper. Focusing attention on the misplacing resources in separation process, the misplacing effects are divided into two parts called respectively as misplacing effect of viscosity and misplacing effect of motion. The proposed separation theory can reasonably explain the results of separation in different fluidization states. Experimental results in pilot and commercial plants showed that the air dense medium fluidized bed is a high efficiency dry cleaning technique. The dynamic stability of fluidized bed density is directly affected by the variation of fine coal content in fluidized bed and can be controlled in expected range through measurement of fluidized bed density and adjusting of split flow rate. With air dense medium fluidized bed, various coals of size 50—6 mm can be efficiently beneficiated. The separation density can be adjusted between 1.2—2.2 g/cm 3, and the probable error E p value is about 0.06.展开更多
Dense captioning aims to simultaneously localize and describe regions-of-interest(RoIs)in images in natural language.Specifically,we identify three key problems:1)dense and highly overlapping RoIs,making accurate loca...Dense captioning aims to simultaneously localize and describe regions-of-interest(RoIs)in images in natural language.Specifically,we identify three key problems:1)dense and highly overlapping RoIs,making accurate localization of each target region challenging;2)some visually ambiguous target regions which are hard to recognize each of them just by appearance;3)an extremely deep image representation which is of central importance for visual recognition.To tackle these three challenges,we propose a novel end-to-end dense captioning framework consisting of a joint localization module,a contextual reasoning module and a deep convolutional neural network(CNN).We also evaluate five deep CNN structures to explore the benefits of each.Extensive experiments on visual genome(VG)dataset demonstrate the effectiveness of our approach,which compares favorably with the state-of-the-art methods.展开更多
The shrinking of cell-size brings significant changes to the wireless uplink of densely small cells (DSCs). A codebook design is proposed that utilizes the strong line of sight (LOS) chan- nel component existing i...The shrinking of cell-size brings significant changes to the wireless uplink of densely small cells (DSCs). A codebook design is proposed that utilizes the strong line of sight (LOS) chan- nel component existing in a DSC system for uplink of the DSC system. To further improve the uplink performance, the high-rank codebook is designed based on singular value decomposition (SVD) due to the unnecessary preservation of strict constant modulus in the DSC system. And according to the simulation result, the proposed codebook leads to significant sum-rate gain and appreciable block error rate (BLER) performance improvement in the DSC system.展开更多
Understanding the equation of state of cold dense matter,i.e.,those inside neutron stars,is a key problem in the multi-messenger astronomical era.In order to facilitate the scientific discussions between different com...Understanding the equation of state of cold dense matter,i.e.,those inside neutron stars,is a key problem in the multi-messenger astronomical era.In order to facilitate the scientific discussions between different commu-nities in the relevant fields,particularly between nuclear physicists and astrophysicists,we have organized the Dialo-gue at the Dream Field(DDF2024).The participants explored topics of various fields such as pulsar astrophysics,transient phenomena,hadronic and nuclear matter,supra-nuclear matter with quark degree of freedom,numerical relativity.This involved discussions on the mechanisms,model constructions,observational impacts,and introduc-tions of new facilities.In-depth exchanges were carried out through invited talks and free discussions,as well as a visit to view the FAST telescope.展开更多
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pr...Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pressure,complicated structure and anisotropic,high flow-resistance and micro pore throats etc,.Generally they also have lots of natural micro fractures,probably leading to stress sensibility.Main damaging factors in such reservoirs are water-sensibility and water-blocking caused by invasive fluids during drilling and production operations.Once damaged,formation permeability can rarely recovered.Numerous studies have shown that damaging extent of water-blocking ranges from 70% to 90%.Main damaging mechanisms and influencing factors of water-blocking were systematically analyzed.Also some feasible precaution or treating approaches of water-blocking were put forward.In a laboratory setting,a new multi-functional drilling fluid composed mainly of amphion polymer,sulfonation polymer,high effectively preventive water-blocking surfactants,ideal packing temporary bridging agents(TBA) and film-forming agents,etc.,were developed.New low-damage drilling fluids has many advantages,such as good rheological properties,excellent effectiveness of water-blocking prevention,good temporary plugging effect,low filtration and ultra-low permeability(API filtration≤5 mL,HTHP filtration≤10 mL,mud cake frictional coefficient≤0.14,permeability recovery>81%),can efficiently prevent or minimize damage,preserve natural formation and enhance comprehensive development-investment effect in TUHA Jurassic dense sandstone reservoir formation with low-permeability,the only one developing integrated condense gas field.Some references can be provided to similar reservoir formations.展开更多
基金Projects(52104143,52109135,52374099)supported by the National Natural Science Foundation of ChinaProject(2025YFHZ0323)supported by the Natural Science Foundation of Sichuan Province,China。
文摘The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditions.In this work,considering the different combinations of confining pressure and bedding plane inclination angle(α),biaxial mechanical loading experiments were conducted on shale containing circular holes.The research results indicate that the confining pressure and inclination angle of the bedding planes significantly influence the failure patterns of shale containing circular holes.The instability of shale containing circular holes can be classified into five types:tensile failure along the bedding planes,tensile failure through the bedding planes,shear slip along the bedding planes,shear failure through the bedding planes,and block instability failure.Furthermore,the evolution of strain and stress fields around the circular holes was found to be the fundamental cause of variations in the initiation characteristics and locations of shale cracks.The crack initiation criterion for shale containing circular hole was established,providing a new method for evaluating the trajectory of shale hole wall fractures.This study holds significant importance for evaluating the evolution and stability of fracture networks within shale reservoirs.
基金The National Natural Science Foundation of China (32371993)The Natural Science Research Key Project of Anhui Provincial University(2022AH040125&2023AH040135)The Key Research and Development Plan of Anhui Province (202204c06020022&2023n06020057)。
文摘This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.
基金Project(51176045) supported by the National Natural Science Foundation of China
文摘The algorithm of dense spectrum correction has been raised and proved based on the correction of discrete spectrum by fast Fourier transform.The result of simulation shows that such algorithm has advantages of high accuracy and small amount of calculation.The algorithm has been successfully applied to the analysis of vibration signals from internal combustion engine.To calculate discrete spectrum,fast Fourier transform has been used to calculate the discrete spectrum by the signals acquired by the sensors on the oil pan,and the signal has been extracted from the mixed signals.
文摘Cotton is one of the most important economic crops in the world,and it provides natural fiber for the textile industry.With the advancement of the textile technology and increased consumption demands on cotton fiber,both cotton yield and quality should be enhanced.However,cotton yield
文摘The mechanism of beneficiation with air dense fluidized bed has been theoretically studied in the paper. Focusing attention on the misplacing resources in separation process, the misplacing effects are divided into two parts called respectively as misplacing effect of viscosity and misplacing effect of motion. The proposed separation theory can reasonably explain the results of separation in different fluidization states. Experimental results in pilot and commercial plants showed that the air dense medium fluidized bed is a high efficiency dry cleaning technique. The dynamic stability of fluidized bed density is directly affected by the variation of fine coal content in fluidized bed and can be controlled in expected range through measurement of fluidized bed density and adjusting of split flow rate. With air dense medium fluidized bed, various coals of size 50—6 mm can be efficiently beneficiated. The separation density can be adjusted between 1.2—2.2 g/cm 3, and the probable error E p value is about 0.06.
基金Project(2020A1515010718)supported by the Basic and Applied Basic Research Foundation of Guangdong Province,China。
文摘Dense captioning aims to simultaneously localize and describe regions-of-interest(RoIs)in images in natural language.Specifically,we identify three key problems:1)dense and highly overlapping RoIs,making accurate localization of each target region challenging;2)some visually ambiguous target regions which are hard to recognize each of them just by appearance;3)an extremely deep image representation which is of central importance for visual recognition.To tackle these three challenges,we propose a novel end-to-end dense captioning framework consisting of a joint localization module,a contextual reasoning module and a deep convolutional neural network(CNN).We also evaluate five deep CNN structures to explore the benefits of each.Extensive experiments on visual genome(VG)dataset demonstrate the effectiveness of our approach,which compares favorably with the state-of-the-art methods.
基金supported by the National High-tech Research and Development Program of China(863 Program)(2012AA111902)the Shanghai Natural Science Foundation(12ZR1433900)
文摘The shrinking of cell-size brings significant changes to the wireless uplink of densely small cells (DSCs). A codebook design is proposed that utilizes the strong line of sight (LOS) chan- nel component existing in a DSC system for uplink of the DSC system. To further improve the uplink performance, the high-rank codebook is designed based on singular value decomposition (SVD) due to the unnecessary preservation of strict constant modulus in the DSC system. And according to the simulation result, the proposed codebook leads to significant sum-rate gain and appreciable block error rate (BLER) performance improvement in the DSC system.
文摘Understanding the equation of state of cold dense matter,i.e.,those inside neutron stars,is a key problem in the multi-messenger astronomical era.In order to facilitate the scientific discussions between different commu-nities in the relevant fields,particularly between nuclear physicists and astrophysicists,we have organized the Dialo-gue at the Dream Field(DDF2024).The participants explored topics of various fields such as pulsar astrophysics,transient phenomena,hadronic and nuclear matter,supra-nuclear matter with quark degree of freedom,numerical relativity.This involved discussions on the mechanisms,model constructions,observational impacts,and introduc-tions of new facilities.In-depth exchanges were carried out through invited talks and free discussions,as well as a visit to view the FAST telescope.
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
基金Project(50574061) supported by the National Natural Science Foundation of China
文摘Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pressure,complicated structure and anisotropic,high flow-resistance and micro pore throats etc,.Generally they also have lots of natural micro fractures,probably leading to stress sensibility.Main damaging factors in such reservoirs are water-sensibility and water-blocking caused by invasive fluids during drilling and production operations.Once damaged,formation permeability can rarely recovered.Numerous studies have shown that damaging extent of water-blocking ranges from 70% to 90%.Main damaging mechanisms and influencing factors of water-blocking were systematically analyzed.Also some feasible precaution or treating approaches of water-blocking were put forward.In a laboratory setting,a new multi-functional drilling fluid composed mainly of amphion polymer,sulfonation polymer,high effectively preventive water-blocking surfactants,ideal packing temporary bridging agents(TBA) and film-forming agents,etc.,were developed.New low-damage drilling fluids has many advantages,such as good rheological properties,excellent effectiveness of water-blocking prevention,good temporary plugging effect,low filtration and ultra-low permeability(API filtration≤5 mL,HTHP filtration≤10 mL,mud cake frictional coefficient≤0.14,permeability recovery>81%),can efficiently prevent or minimize damage,preserve natural formation and enhance comprehensive development-investment effect in TUHA Jurassic dense sandstone reservoir formation with low-permeability,the only one developing integrated condense gas field.Some references can be provided to similar reservoir formations.