为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Tran...为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Transformer网络,提出了一种DDPM-Transformer风电机组故障样本生成方法。首先,将用于计算机视觉图像生成领域的DDPM模型应用于风电机组故障诊断领域中,通过前向加噪过程将数据逐渐转化为噪声,再通过逆向去噪过程将噪声逐步恢复为原始数据,实现从噪声中生成故障数据,解决数据不平衡问题;其次,通过对原始DDPM中使用的U-net模块进行改进,使用Transformer模型替换U-net网络,利用扩散后的数据和添加的噪声训练Transformer模型,实现噪声预测,以提高故障数据的生成质量;最后,使用多种生成模型评价指标对生成的故障数据进行评价,在监督控制和数据采集系统(supervisory control and data acquisition,SCADA)故障数据生成中论证改进DDPM-Transformer模型的性能。通过试验证明,所提DDPM-Transformer模型与现有的生成模型相比,最大均值异(maximum mean discrepancy,MMD)最大提升0.13,峰值信噪比(peak signal to noise ratio,PSNR)最大提升7.8。所提模型可以有效地生成质量更高的风电机组故障样本,从而基于该样本集辅助训练基于深度学习的故障诊断模型,可以使诊断模型具有更高精度和良好的稳定性。展开更多
飞机机动识别在量化飞行员训练效果、预测对方战术意图及获取战场主动权等方面有着重要意义,然而战场数据的高度不平衡性严重制约了该技术的实际应用。近年来,生成式人工智能迅猛发展,其中,去噪扩散概率模型(Denoising Diffusion Probab...飞机机动识别在量化飞行员训练效果、预测对方战术意图及获取战场主动权等方面有着重要意义,然而战场数据的高度不平衡性严重制约了该技术的实际应用。近年来,生成式人工智能迅猛发展,其中,去噪扩散概率模型(Denoising Diffusion Probability Model,DDPM)在视觉领域展现出卓越的样本生成能力,受此启发,本文提出了一种基于马尔可夫转移场(Markov Transfer Field,MTF)的时序数据可视化方法:通过将飞机机动时序数据转换为二维图像,并结合DDPM生成新样本,有效解决样本不平衡问题,同时将时序分类任务转化为图像分类任务。为此,本文设计了一种新型分类网络架构,深度融合MobileNetV3的高效局部特征提取能力与Swin-Transformer的全局注意力机制优势,构建了融合可视化方法、DDPM生成模型与分类网络的飞机机动识别方法。实验结果表明,该方法在飞机机动识别任务中的精度显著优于图像分类领域的其他经典模型。展开更多
文摘为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Transformer网络,提出了一种DDPM-Transformer风电机组故障样本生成方法。首先,将用于计算机视觉图像生成领域的DDPM模型应用于风电机组故障诊断领域中,通过前向加噪过程将数据逐渐转化为噪声,再通过逆向去噪过程将噪声逐步恢复为原始数据,实现从噪声中生成故障数据,解决数据不平衡问题;其次,通过对原始DDPM中使用的U-net模块进行改进,使用Transformer模型替换U-net网络,利用扩散后的数据和添加的噪声训练Transformer模型,实现噪声预测,以提高故障数据的生成质量;最后,使用多种生成模型评价指标对生成的故障数据进行评价,在监督控制和数据采集系统(supervisory control and data acquisition,SCADA)故障数据生成中论证改进DDPM-Transformer模型的性能。通过试验证明,所提DDPM-Transformer模型与现有的生成模型相比,最大均值异(maximum mean discrepancy,MMD)最大提升0.13,峰值信噪比(peak signal to noise ratio,PSNR)最大提升7.8。所提模型可以有效地生成质量更高的风电机组故障样本,从而基于该样本集辅助训练基于深度学习的故障诊断模型,可以使诊断模型具有更高精度和良好的稳定性。
文摘飞机机动识别在量化飞行员训练效果、预测对方战术意图及获取战场主动权等方面有着重要意义,然而战场数据的高度不平衡性严重制约了该技术的实际应用。近年来,生成式人工智能迅猛发展,其中,去噪扩散概率模型(Denoising Diffusion Probability Model,DDPM)在视觉领域展现出卓越的样本生成能力,受此启发,本文提出了一种基于马尔可夫转移场(Markov Transfer Field,MTF)的时序数据可视化方法:通过将飞机机动时序数据转换为二维图像,并结合DDPM生成新样本,有效解决样本不平衡问题,同时将时序分类任务转化为图像分类任务。为此,本文设计了一种新型分类网络架构,深度融合MobileNetV3的高效局部特征提取能力与Swin-Transformer的全局注意力机制优势,构建了融合可视化方法、DDPM生成模型与分类网络的飞机机动识别方法。实验结果表明,该方法在飞机机动识别任务中的精度显著优于图像分类领域的其他经典模型。