期刊文献+
共找到548篇文章
< 1 2 28 >
每页显示 20 50 100
An infrared target intrusion detection method based on feature fusion and enhancement 被引量:13
1
作者 Xiaodong Hu Xinqing Wang +3 位作者 Xin Yang Dong Wang Peng Zhang Yi Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期737-746,共10页
Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infr... Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively. 展开更多
关键词 Target intrusion detection convolutional neural network feature fusion Infrared target
在线阅读 下载PDF
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
2
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
融合时空注意力机制的多尺度卷积车辆轨迹预测 被引量:1
3
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 多尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 多尺度特征融合
在线阅读 下载PDF
融合关键区域信息的双流网络视频表情识别
4
作者 孔英会 崔文婷 +1 位作者 张珂 车辚辚 《智能系统学报》 北大核心 2025年第3期658-669,共12页
人脸表情识别是计算机视觉领域中的一个重要研究课题,而视频中的表情识别在很多场景下具有实用价值。视频序列包含丰富的帧内空间信息与帧间时间信息,同时面部关键区域的提取也对表情识别结果有重要影响,本文提出一种融合关键区域信息... 人脸表情识别是计算机视觉领域中的一个重要研究课题,而视频中的表情识别在很多场景下具有实用价值。视频序列包含丰富的帧内空间信息与帧间时间信息,同时面部关键区域的提取也对表情识别结果有重要影响,本文提出一种融合关键区域信息的双流网络表情识别方法。构建空间-时间双流网络,其中空间网络分支结合面部运动单元和CSFA(channel-spatial frame attention),重点关注影响表情识别结果的面部关键区域,以实现空间特征的有效提取;时间分支通过Farneback提取光流获得帧间的表情运动信息,并借助空间关键区域掩模选取降低光流计算复杂度。对空间-时间双流网络识别结果进行决策融合,得到最终视频表情识别结果。该方法在eNTERFACE'05、CK+数据集上进行实验测试,结果表明本文所提方法可有效提升识别精度,且提高了运行效率。 展开更多
关键词 视频表情识别 双流网络 注意力机制 光流 卷积神经网络 掩模 特征融合 面部表情识别
在线阅读 下载PDF
基于AF-BiTCN的弹道中段目标HRRP识别
5
作者 王晓丹 王鹏 +2 位作者 宋亚飞 向前 李京泰 《北京航空航天大学学报》 北大核心 2025年第2期349-359,共11页
针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为... 针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为双向序列;构建BiTCN逐层提取HRRP的双向深层时序特征,并将双向时序特征采用加性策略融合;利用更加稳健的融合特征实现对弹道中段目标的识别,并使用Adam算法优化AF-BiTCN的收敛速度和稳定性。实验结果表明:所提的基于AF-BiTCN的弹道中段目标HRRP识别方法较堆叠选择长短期记忆网络(SLSTM)、堆叠门控循环单元(SGRU)等6种时序方法具有更高的准确率和更快的识别速度,在测试集上达到了96.60%的准确率,并且在噪声数据集上表现出更好的鲁棒性。 展开更多
关键词 双向时间卷积神经网络 弹道目标识别 特征融合 高分辨距离像 滑窗算法
在线阅读 下载PDF
融合局部和全局特征的深度多视图聚类网络
6
作者 李顺勇 李嘉茗 +1 位作者 曹付元 郑孟蛟 《计算机科学与探索》 北大核心 2025年第8期2085-2098,共14页
多视图聚类是当前数据分析领域的一个重要研究方向,旨在通过整合来自不同视角的数据,提升聚类精度。然而,传统的多视图聚类方法虽然在一定程度上提高了聚类效果,但往往忽略了视图间局部与全局特征的交互与融合。此外,尽管近年提出的多... 多视图聚类是当前数据分析领域的一个重要研究方向,旨在通过整合来自不同视角的数据,提升聚类精度。然而,传统的多视图聚类方法虽然在一定程度上提高了聚类效果,但往往忽略了视图间局部与全局特征的交互与融合。此外,尽管近年提出的多视图深度聚类方法,通过深度神经网络或对比学习增强了表征能力,但大多只关注局部或全局特征,未能在同一框架下对这两类特征进行综合处理。针对这些不足,提出了一种融合卷积神经网络与Transformer的深度多视图聚类模型(DMVCN-ILGF)。该模型设计了并行的卷积分支和Transformer分支,分别用于提取局部特征和全局特征。为了实现特征的有效融合,引入了特征交互机制(FIM)和特征融合模块(FFM),通过充分整合各视图的特征信息,以增强不同特征的交互和融合,最终提升聚类性能。进一步地,还设计了实例级和类别级对比损失,分别计算各视图的局部与全局特征之间的相似性,从而优化模型的表征能力和聚类效果。实验结果表明,提出的DMVCN-ILGF模型在多个多视图数据集上均取得了显著优于现有方法的聚类性能。 展开更多
关键词 多视图聚类 卷积神经网络 TRANSFORMER 特征融合
在线阅读 下载PDF
基于自适应多分支卷积的声学场景分类
7
作者 韦娟 何德华 宁方立 《系统工程与电子技术》 北大核心 2025年第10期3148-3154,共7页
针对声学场景分类任务中模型特征表达能力不充足的问题,提出一种基于自适应多分支卷积优化的网络架构。首先,使用多支路分别提取特征,再引入动态权重自适应改变权值平衡每个支路,提升特征感知能力。其次,考虑现有模型分类时忽略类与类... 针对声学场景分类任务中模型特征表达能力不充足的问题,提出一种基于自适应多分支卷积优化的网络架构。首先,使用多支路分别提取特征,再引入动态权重自适应改变权值平衡每个支路,提升特征感知能力。其次,考虑现有模型分类时忽略类与类之间的关系问题,引入粗粒度分类器辅助训练原分类模型,通过结果融合增强分类过程。在TUT2020移动开发数据集上进行训练与测试。实验结果表明,相较于优化前的算法,所提模型在准确率上提升了6.5%,证明所提方法可以有效提升整体分类效果。 展开更多
关键词 声学场景分类 卷积神经网络 自适应特征融合 层次结构
在线阅读 下载PDF
融合多源信息及图像特征泛化的空气质量检测
8
作者 王晓婷 崔雅博 刘丽娜 《电子测量技术》 北大核心 2025年第13期166-173,共8页
针对空气PM_(2.5)浓度检测过度依赖专业设备的问题,提出了一种融合多源信息及图像特征泛化的空气质量检测算法。首先采用EfficientNet-B0作为主干网络对输入的大气可见光图像进行特征编码,将温度、湿度、风速、气压和光照强度等多源气... 针对空气PM_(2.5)浓度检测过度依赖专业设备的问题,提出了一种融合多源信息及图像特征泛化的空气质量检测算法。首先采用EfficientNet-B0作为主干网络对输入的大气可见光图像进行特征编码,将温度、湿度、风速、气压和光照强度等多源气象信息映射为与大气图像对应的特征向量,并与大气图像特征进行拼接融合;然后利用全连接层将全局特征输出为标量,并利用损失函数检测出空气的PM_(2.5)浓度;最后在网络模型训练阶段,通过对大气图像不同尺度的特征进行随机泛化增强来丰富样本分布空间,使网络能够在有限的数据样本中学习到更多特征,从而有效改善了检测网络的性能。实验结果表明:设计的检测方法与几种主流的方法相比具有更高的检测精度和稳定性,在测试集上得到的RMSE和R-squared分别为21.55μg/m^(3)和0.923,通过对8个场景检测,得到结果的平均误差仅为5.2%,最大误差也仅为7.6%,能够适应各类极端大气污染环境的空气质量检测任务。 展开更多
关键词 空气质量 PM_(2.5)检测 卷积神经网络 多源信息 特征泛化增强 特征融合
在线阅读 下载PDF
噪声背景下梅尔频率倒谱系数与多注意力网络在电机故障诊断中的应用
9
作者 宋恩哲 朱仁杰 +2 位作者 靖海国 姚崇 柯赟 《哈尔滨工程大学学报》 北大核心 2025年第3期475-485,共11页
针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模... 针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模块的自适应调节能力及多特征融合策略进一步减少噪声对故障诊断的干扰。通过电机台架数据验证了该方法在噪声条件下诊断的可行性,然而该方法受梅尔频率倒谱系数参数与网络结构的直接影响,因此具体分析了不同参数条件对抗噪性能的影响。实验结果表明:在信噪比-10 dB噪声背景下,梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络相结合的故障诊断方法仍保持90%以上的诊断精度。 展开更多
关键词 电机 故障诊断 噪声环境 梅尔频率倒谱系数 卷积神经网络 多尺度 卷积注意力模块 特征融合
在线阅读 下载PDF
自适应卷积注意力与掩码结构协同的显著目标检测
10
作者 朱磊 袁金垚 +1 位作者 王文武 蔡小嫚 《电子与信息学报》 北大核心 2025年第1期260-270,共11页
显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点... 显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点的密集预测方式以获取像素显著值,然而该方式不符合基于人类视觉系统的场景解析机制,即人眼通常对语义区域进行整体分析而非关注像素级信息;(2)增强上下文信息关联在SOD任务中受到广泛关注,但通过Transformer主干结构获取长程关联特征不一定具有优势。SOD应更关注目标在适当区域内其中心-邻域差异性而非全局长程依赖。针对上述问题,该文提出一种新的显著目标检测模型,将CNN形式的自适应注意力和掩码注意力集成到网络中,以提高显著目标检测的性能。该算法设计了基于掩码感知的解码模块,通过将交叉注意力限制在预测的掩码区域来感知图像特征,有助于网络更好地聚焦于显著目标的整体区域。同时,该文设计了基于卷积注意力的上下文特征增强模块,与Transformer逐层建立长程关系不同,该模块仅捕获最高层特征中的适当上下文关联,避免引入无关的全局信息。该文在4个广泛使用的数据集上进行了实验评估,结果表明,该文提出的方法在不同场景下均取得了显著的性能提升,具有良好的泛化能力和稳定性。 展开更多
关键词 显著目标检测 卷积神经网络形式的自适应注意力 掩码注意力 特征增强
在线阅读 下载PDF
基于深度学习的癫痫异常信号检测和分类模型
11
作者 王剑 成婷 +1 位作者 宋政阳 张一丁 《电子测量技术》 北大核心 2025年第17期113-124,共12页
癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电信号的分析。近年来,基于深度学习的方法在癫痫检测中得到了广泛应用,但这些方法通常依赖于单一的特征提取技术,且大多忽略了EEG信号的空间域特征。为了捕捉EEG信号的空域特征,研究... 癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电信号的分析。近年来,基于深度学习的方法在癫痫检测中得到了广泛应用,但这些方法通常依赖于单一的特征提取技术,且大多忽略了EEG信号的空间域特征。为了捕捉EEG信号的空域特征,研究人员尝试引入EEG的图表示,并结合图神经网络模型进行建模。然而,现有方法的图表示通常需要每个顶点遍历所有其他顶点来构建图结构,导致较高的时间复杂度,难以满足临床实时诊断的需求。针对上述挑战,首先提出了核心邻域图结构,在此基础上,进一步提出了基于双视图输入的癫痫自动检测和分类框架——DV-SeizureNet。该框架能够同时学习EEG信号的时域、频域和空域特征,实现癫痫异常检测和发作分类。在TUSZ数据集上的实验表明,DV-SeizureNet在癫痫检测任务中达到91.4%的准确率,优于现有最先进方法2.1%。在分类任务中,模型对4种癫痫发作类型的平均分类准确率为82.8%,F1-score为81.2%。DV-SeizureNet通过双视图学习框架,全面提取并融合EEG信号的时空频域特征,在癫痫异常检测和发作分类任务中表现优越,为临床诊断提供了可靠的辅助工具。 展开更多
关键词 癫痫检测 深度学习 EEG信号 双视图学习 图卷积神经网络 多尺度特征融合
在线阅读 下载PDF
基于级联的多尺度特征融合残差去噪网络
12
作者 郭业才 胡晓伟 毛湘南 《计算机科学》 北大核心 2025年第6期239-246,共8页
针对图像去噪特征提取单一化以及特征利用率低,不能生成更清晰图像的问题,提出了级联多尺度特征融合残差真实图像去噪网络。该网络双分支自适应密集残差块采用双路非对称扩张卷积扩展图像感受野,在水平尺度上选择性地提取丰富的纹理特... 针对图像去噪特征提取单一化以及特征利用率低,不能生成更清晰图像的问题,提出了级联多尺度特征融合残差真实图像去噪网络。该网络双分支自适应密集残差块采用双路非对称扩张卷积扩展图像感受野,在水平尺度上选择性地提取丰富的纹理特征。在多尺度空间U-Net模块中,利用多尺度空间融合块增强网络对图像整体结构的学习能力,学习不同层次的信息,获取基于图像空间和上下文信息的多级特征。跳跃连接促进结构之间的参数共享,使不同尺度的特征充分融合,保证信息的完整性。最后,采用双残差学习构建出清晰的去噪图像。结果表明,该算法在真实噪声数据集(DND和SIDD)上的峰值信噪比分别为39.68 dB和39.50 dB,结构相似性分别为0.953和0.957,优于主流去噪算法。所提算法在增强去噪性能的同时,也保留了更详细的信息,使图像质量进一步提升。 展开更多
关键词 图像去噪 真实噪声 卷积神经网络 多尺度特征融合 密集残差
在线阅读 下载PDF
基于结构多维特征构建图卷积神经网络的结构损伤识别方法
13
作者 杨建辉 赵清瑄 蒲脯林 《湖南大学学报(自然科学版)》 北大核心 2025年第8期158-171,共14页
以数据为驱动的深度学习结构损伤识别(structural damage identification,SDI)效果受结构复杂程度、模型构建方法及数据规模等因素影响较大.本文引入图卷积神经网络(graph convolutional neural network,GCN)以整合结构节点间的属性特征... 以数据为驱动的深度学习结构损伤识别(structural damage identification,SDI)效果受结构复杂程度、模型构建方法及数据规模等因素影响较大.本文引入图卷积神经网络(graph convolutional neural network,GCN)以整合结构节点间的属性特征,从图的视角挖掘节点间的复杂属性关系,为SDI提供多维度学习信息.为此,设计了一种融合结构多维特征的图卷积神经网络模型(graph convolutional neural network integrating multi-dimensional features of structure,S-GCN),基于结构振动数据构造损伤特征矩阵,并通过衍生图网络,以图的节点和边表征结构节点的连接关系,构建边索引矩阵,将结构损伤状态、振动数据及节点属性等多维特征信息输入GCN进行结构损伤特征提取及预测识别,探索结构多维特征信息驱动下的GCN在损伤预测中的应用效果.通过两个钢结构验证方法的可行性及有效性,结果表明,S-GCN能够整合结构多维特征信息,对两个结构对象均实现了较高的损伤预测准确性,并展现出良好的噪声鲁棒性.进一步的对比分析显示,相较于三种非GCN模型,S-GCN能够高效地依托节点间关系快速更新节点特征并预测节点损伤状态,其损伤识别准确率、计算效率及网络各层演进过程均优于对比模型,验证了在结构损伤识别中融合结构空间特征的有效性. 展开更多
关键词 结构损伤识别 图卷积神经网络 结构多维特征融合 噪声鲁棒性 训练效率
在线阅读 下载PDF
基于深度学习的车辆轻微损伤检测算法
14
作者 杨长春 王宇鹏 +1 位作者 胡玉蝶 朱文涛 《计算机工程与设计》 北大核心 2025年第10期2986-2993,共8页
针对车辆损伤检测精确度不足的问题,提出了一种基于YOLOv8改进的实例分割模型。该算法设计了SimPConv模块,在充分保留数据特征信息的基础上融入了SimAM注意力机制,有效降低了目标特征细粒度的丢失。为增强模型对局部特征信息的捕捉能力... 针对车辆损伤检测精确度不足的问题,提出了一种基于YOLOv8改进的实例分割模型。该算法设计了SimPConv模块,在充分保留数据特征信息的基础上融入了SimAM注意力机制,有效降低了目标特征细粒度的丢失。为增强模型对局部特征信息的捕捉能力,提出了新的局部注意力机制SPPRNet。同时,为提升网络多尺度信息的特征提取能力,设计了新的特征融合模块。实验结果表明,SMF-YOLO在APb和APm指标上分别实现了10%、10.5%的提升,且GFLOPs仅为99.7,达到了计算复杂度更低而精度更高的效果。 展开更多
关键词 机器视觉 实例分割 汽车损伤检测 卷积神经网络 注意力机制 多尺度特征融合 深度学习
在线阅读 下载PDF
多尺度特征融合算法及其在智能成矿预测中的应用
15
作者 杨娜 《矿物岩石地球化学通报》 北大核心 2025年第3期478-491,共14页
智能成矿预测是利用人工智能算法挖掘多源地质找矿大数据与矿床位置耦合关系以探寻潜在成矿区域。深度学习自主提取深层次成矿相关特征,有助于发现隐含的重要找矿信息。其中,卷积神经网络保留多源控矿因素局部空间信息,对探寻找矿位置... 智能成矿预测是利用人工智能算法挖掘多源地质找矿大数据与矿床位置耦合关系以探寻潜在成矿区域。深度学习自主提取深层次成矿相关特征,有助于发现隐含的重要找矿信息。其中,卷积神经网络保留多源控矿因素局部空间信息,对探寻找矿位置具有重要作用。本文探讨了卷积神经网络应用于智能成矿预测的任务转化与主要挑战:转化为含矿、不含矿多源控矿因素图像样本的二分类任务,以含矿概率量化成矿潜力;存在成矿相关特征提取单一而不能满足多通道变量特征信息全面提取的不足。为此引出多尺度融合特征提取算法,同时从多个卷积尺度提取成矿相关特征并融合以提高特征多样性和丰富性,重点分析了通道融合与像素融合的不同多尺度融合特征提取方式并开展了对比实验。搭建了样本建立、模型构建、模型评价、模型预测的智能成矿预测流程框架,基于该框架以陕西省凤县金矿潜力预测为应用实例,对多源控矿因素数据进行多尺度成矿相关融合特征提取,构建了成矿预测模型并圈定了高成矿潜力靶区,为智能化找矿提供技术支撑。 展开更多
关键词 智能成矿预测 深度学习 多尺度特征融合 卷积神经网络
在线阅读 下载PDF
增强双流Transformer的柴油发动机剩余寿命预测模型 被引量:1
16
作者 张曦 杨颖 +2 位作者 陈超君 王春风 杨磊 《汽车工程》 北大核心 2025年第2期292-300,325,共10页
基于Transformer的模型在剩余使用寿命(remaining useful life,RUL)预测方面取得了显著的进展。然而,现有Transformer模型主要存在以下不足:模型在提取局部特征方面有所欠缺,且没有同时考虑输入特征的不同时间和不同空间的重要性。针对... 基于Transformer的模型在剩余使用寿命(remaining useful life,RUL)预测方面取得了显著的进展。然而,现有Transformer模型主要存在以下不足:模型在提取局部特征方面有所欠缺,且没有同时考虑输入特征的不同时间和不同空间的重要性。针对以上问题,提出一种增强的双流Transformer模型,通过局部特征提取模块和交互融合模块对模型进行增强。首先,通过局部特征提取模块分别在时间流和空间流提取局部特征,以弥补Transformer在局部特征提取方面的不足。然后,使用双流Transformer分别在时间和空间维度提取长期依赖,增强双流分支的互补学习。最后,构建交互融合模块,通过双线性融合方法捕获流级交互,进一步提升预测效果。使用多个模型在某柴油发动机制造商两个真实的数据集上进行实验,其结果表明评价指标RMSE和Score至少分别降低3.23%和5.89%。 展开更多
关键词 剩余使用寿命预测 Transformer编码器 卷积神经网络 特征融合 滑动窗口
在线阅读 下载PDF
基于STFT-SE-CNN多通道特征融合的水电机组故障诊断 被引量:1
17
作者 魏学锋 姬升阳 +4 位作者 刘志辉 鹿明明 徐恺 肖龙 李超顺 《水电能源科学》 北大核心 2025年第5期187-191,共5页
针对基于单一传感器的水电机组故障诊断模型易导致有效信息的遗漏不利于机组状态的准确识别问题,提出了一种基于STFT-SE-CNN多通道特征融合的水电机组故障诊断模型。即首先将多个传感器数据通过短时傅里叶变换转换(STFT)为二维时频特征... 针对基于单一传感器的水电机组故障诊断模型易导致有效信息的遗漏不利于机组状态的准确识别问题,提出了一种基于STFT-SE-CNN多通道特征融合的水电机组故障诊断模型。即首先将多个传感器数据通过短时傅里叶变换转换(STFT)为二维时频特征图,再利用卷积神经网络(CNN)提取不同通道的深度故障特征;然后通过SE注意力机制对特征进行加权的方式进行多通道特征融合,并将融合后的特征展平输入分类器获得故障诊断的结果;最后在帕德博恩轴承数据集和工业实际数据集上进行试验验证。结果表明,所提模型相比于其他模型具有更高的诊断精度,在实际的水电机组故障诊断中具有辅助判断的作用。 展开更多
关键词 水电机组 故障诊断 短时傅里叶变换 注意力机制 卷积神经网络 多通道特征融合
在线阅读 下载PDF
基于复数协方差卷积神经网络的运动想象脑电信号解码方法 被引量:1
18
作者 黄仁慧 张锐锋 +3 位作者 文晓浩 闭金杰 黄守麟 李廷会 《广西师范大学学报(自然科学版)》 北大核心 2025年第3期43-56,共14页
深度挖掘和利用脑电信号的特征信息,以提高运动想象的分类性能,一直是脑机接口的研究热点。考虑到脑电特征空间具有高维性且与幅值和相位密切相关,如何有效表达和同时利用脑电的幅值和相位信息已经成为一个难题。为此,本研究提出一种基... 深度挖掘和利用脑电信号的特征信息,以提高运动想象的分类性能,一直是脑机接口的研究热点。考虑到脑电特征空间具有高维性且与幅值和相位密切相关,如何有效表达和同时利用脑电的幅值和相位信息已经成为一个难题。为此,本研究提出一种基于复数协方差特征的三维复值卷积神经网络。首先,构建脑电不同频率下的复数协方差矩阵特征,不仅通过复值表示将幅值和相位信息结合在一起,并且保留分类所需的多变量信息,如幅值、相位、空间位置、频率等。其次,设计针对多复数协方差特征的全复数卷积神经网络,实现运动想象任务的高性能分类。在2个公开数据集上的实验结果表明,本研究提出的方法可获得比现有前沿方法至少高出2.49和1.85个百分点的平均准确率。 展开更多
关键词 脑电信号 脑机接口 幅相信息融合 复数协方差特征 复值卷积神经网络 信息交互
在线阅读 下载PDF
基于RGB-D图像的语义分割方法综述 被引量:1
19
作者 王晨 杜晨曦 +1 位作者 刘瑞军 齐越 《计算机辅助设计与图形学学报》 北大核心 2025年第1期100-119,共20页
语义分割技术致力于精确识别并分割图像中的各个物体或场景.基于RGB图像的方法在信息利用上存在局限,导致性能受限,随着深度传感器技术的普及,深度图的引入为语义分割网络注入了丰富的几何信息,显著地提升了分割精度.文中介绍了近几年基... 语义分割技术致力于精确识别并分割图像中的各个物体或场景.基于RGB图像的方法在信息利用上存在局限,导致性能受限,随着深度传感器技术的普及,深度图的引入为语义分割网络注入了丰富的几何信息,显著地提升了分割精度.文中介绍了近几年基于RGB-D图像的语义分割方面的显著进展和相关方法,根据对多模态融合特征处理方式的差异,将基于RGB-D图像的语义分割方法归纳为单分支、双分支、三分支网络架构3大类.其中,单分支网络在同一分支同时处理RGB和深度特征,实现特征的有机结合;双分支网络利用RGB和深度特征之间的互补性,优化多模态特征的校正与融合;三分支网络在保留原始的RGB和深度特征的同时,深入挖掘融合特征,确保信息的全面性.同时,总结注意力、模型优化等关键技术,并归纳常用的数据集和评价指标,对比分析各种方法在不同数据集上的性能,最后总结当前RGB-D图像语义分割在多模态数据交互与处理方面所面临的挑战,展望了语义分割技术在跨领域数据融合方向的发展前景. 展开更多
关键词 RGB-D图像 语义分割 多模态特征融合 卷积神经网络
在线阅读 下载PDF
基于特征融合变维卷积神经网络的高铁轮轨不良状态识别方法 被引量:1
20
作者 彭佳宁 池茂儒 +3 位作者 梁树林 许文天 崔利通 戴成昊 《铁道标准设计》 北大核心 2025年第9期223-233,共11页
高速列车轮轨状态对车辆服役安全性影响较大,轮轨状态不良会加剧轮轨间相互作用,不仅影响车辆运营安全,而且对乘客乘坐舒适性产生影响。在轮轨不良状态中,车轮多边形和钢轨波磨问题尤为突出,传统车载轮轨监测方法诊断精度较低、结果反... 高速列车轮轨状态对车辆服役安全性影响较大,轮轨状态不良会加剧轮轨间相互作用,不仅影响车辆运营安全,而且对乘客乘坐舒适性产生影响。在轮轨不良状态中,车轮多边形和钢轨波磨问题尤为突出,传统车载轮轨监测方法诊断精度较低、结果反馈不及时,易导致轮轨状态持续恶化,所以轮轨状态的高质量快速诊断问题亟待解决。建立某型高速动车组刚柔耦合模型,制作了干扰性较强的轮轨不良状态数据集,仿真获得不同工况下的轴箱垂向振动加速度,提出一种基于轴箱垂向振动加速度的时、频域特征融合变维卷积神经网络对轮轨状态进行识别,实现了对列车轮轨状态快速、准确识别,解决了时频分析、主成分分析方法以及现有车载轮轨状态监测系统在复杂工况下轮轨状态判别困难的问题。该诊断模型在一维卷积神经网络对振动时间序列和对应频谱序列进行快速降维的基础上,将时、频特征融合并升维重排形成时频特征图,采用二维卷积神经网络对小尺寸时频特征图进行特征提取和轮轨状态判别。结果表明,该模型在无需进行复杂信号处理和信号主成分分析的情况下,仿真测试集准确率达到95%以上,实测数据集准确率较高且响应时间较短,研究成果对轮轨健康在线监测具有一定的理论意义。 展开更多
关键词 高速列车 车轮多边形 钢轨波磨 特征融合 变维卷积神经网络
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部