In order to study the detonation velocity deficits of bending flexible detonating fuses,a physical model and a theoretical mathematical equation of detonation velocity deficits for bending flexible detonation fuses we...In order to study the detonation velocity deficits of bending flexible detonating fuses,a physical model and a theoretical mathematical equation of detonation velocity deficits for bending flexible detonation fuses were established based on the detonation wave's corner effects and delay time phenomenon by using non-dimensional analysis method.Besides,a semi-empirical formula of detonation velocity deficit for bending fuses in the same charge size was obtained through experiment and curve fitting.The result shows that an exponential relationship between the detonation velocity deficits and reciprocal of curvature radius.展开更多
BACKGROUND: The use and abuse of designer drugs has been recognized for decades; however there are many derivatives of compounds that make their way into the community. Abuse of compound(s) known on the street as &quo...BACKGROUND: The use and abuse of designer drugs has been recognized for decades; however there are many derivatives of compounds that make their way into the community. Abuse of compound(s) known on the street as "bath salt" is on the rise.METHODS: We report the case of a 33-year-old man who complained of "flashbacks" and right arm shaking that followed a night of "bath salt" snorting. The active compound methylenedioxypyrovalerone methamphetamine(MDPV) was confirmed; however, analysis of three different "bath salt" products showed difference in their active components.RESULTS: The patient's symptoms remained stable and he was discharged home after observation in the emergency department with instructions to return for any symptom progression.CONCLUSION: Practitioners should be aware of the abuse of the compounds and that not all "bath salt" products contain MDPV.展开更多
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil ...To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa(Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate(PN), stomatal conductance(gs), and water-use efficiency(WUE) in the seedlings exhibited a clear threshold response to the relative soil water content(RSWC). The highest PNand WUEoccurred at RSWCof51.84 and 64.10%, respectively. Both PNand WUEwere higher than the average levels at 39.79% B RSWCB 73.04%. When RSWCdecreased from 51.84 to 37.52%,PN, gs, and the intercellular CO2 concentration(Ci)markedly decreased with increasing drought stress; the corresponding stomatal limitation(Ls) substantially increased, and nonphotochemical quenching(NPQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II(PSII) in the form of heat, and the reduction in PNwas primarily due to stomatal limitation.While RSWCdecreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry(Fv/Fm) and the effective quantum yield of PSII photochemistry(UPSII), photochemical quenching(qP), and NPQ; in contrast, minimal fluorescence yield of the dark-adapted state(F0) increased markedly. Thus,the major limiting factor for the PNreduction changed to a nonstomatal limitation due to PSII damage. Therefore, an RSWCof 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% B RSWCB 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F.suspensa.展开更多
In this article, the expected discounted penalty function Фδ,α (u) with constant interest δ and "discounted factor" exp(-αTδ) is considered. As a result, the integral equation of Фδ,α (u) is derived a...In this article, the expected discounted penalty function Фδ,α (u) with constant interest δ and "discounted factor" exp(-αTδ) is considered. As a result, the integral equation of Фδ,α (u) is derived and an exact solution for Фδ,α (0) is found. The relation between the joint density of the surplus immediately prior to ruin, and the deficit at ruin and the density of the surplus immediately prior to ruin is then obtained based on analytical methods.展开更多
Continuous recording of precipitation and soil water content(SWC), especially during long periods of torrential rainfall, has proven challenging. Over a 16 h period spanning 21-22 July, 2012, Beijing experienced his...Continuous recording of precipitation and soil water content(SWC), especially during long periods of torrential rainfall, has proven challenging. Over a 16 h period spanning 21-22 July, 2012, Beijing experienced historic rainfall that totaled 164.4 mm. We used large lysimeter technology in four forested plots to record precipitation and variation in SWC at 10-min intervals to quantify the response of forestland SWC to heavy rainfall in a semi-arid area. Mean,maximum and minimum rainfall intensities were 23.4, 46.8and 12.0 mm/h, respectively. Rainfall was concentrated in 2-6 mm bursts that accounted for 67.32 % of the total rainfall event. Soil moisture conditions in this region are strongly dependent on patterns of precipitation. Water infiltration into 20, 40, 60, 80, 100, 120 and 160 cm soil layers required 1, 5,20, 37, 46, 52 and 61 mm of precipitation, respectively, and to fully saturate these soil layers required 80, 120, 140, 150, 180,200 and 220 mm of precipitation, respectively.展开更多
The passivation of non-radiative states and inhibition of band tailings are desirable for improving the open-circuit voltage(V_(oc))of CZTSSe thin-film solar cells.Recently,alkali metal doping has been investigated to...The passivation of non-radiative states and inhibition of band tailings are desirable for improving the open-circuit voltage(V_(oc))of CZTSSe thin-film solar cells.Recently,alkali metal doping has been investigated to passivate defects in CZTSSe films.Herein,we investigate Li doping effects by applying Li OH into CZTSSe precursor solutions,and verify that carrier transport is enhanced in the CZTSSe solar cells.Systematic characterizations demonstrate that Li doping can effectively passivate non-radiative recombination centers and reduce band tailings of the CZTSSe films,leading to the decrease in total defect density and the increase in separation distance between donor and acceptor.Fewer free carriers are trapped in the band tail states,which speeds up carrier transport and reduces the probability of deep-level defects capturing carriers.The charge recombination lifetime is about twice as long as that of the undoped CZTSSe device,implying the heterojunction interface recombination is also inhibited.Besides,Li doping can increase carrier concentration and enhance build-in voltage,leading to a better carrier collection.By adjusting the Li/(Li+Cu)ratio to 18%,the solar cell efficiency is increased significantly to 9.68%with the fill factor(FF)of 65.94%,which is the highest FF reported so far for the flexible CZTSSe solar cells.The increased efficiency is mainly attributed to the reduction of V_(oc)deficit and the improved CZTSSe/Cd S junction quality.These results open up a simple route to passivate non-radiative states and reduce the band tailings of the CZTSSe films and improve the efficiency of the flexible CZTSSe solar cells.展开更多
We consider a continuous time risk model based on a two state Markov process, in which after an exponentially distributed time, the claim frequency changes to a different level and can change back again in the same wa...We consider a continuous time risk model based on a two state Markov process, in which after an exponentially distributed time, the claim frequency changes to a different level and can change back again in the same way. We derive the Laplace transform for the first passage time to surplus zero from a given negative surplus and for the duration of negative surplus. Closed-form expressions are given in the case of exponential individual claim. Finally, numerical results are provided to show how to estimate the moments of duration of negative surplus.展开更多
Water deficit is one of the major limiting factors in vegetation recovery and reconstruction in the semi-arid area of loess hilly regions. Leaf photosynthesis in Hippophae rhamnoides Linn., a common tree grown in this...Water deficit is one of the major limiting factors in vegetation recovery and reconstruction in the semi-arid area of loess hilly regions. Leaf photosynthesis in Hippophae rhamnoides Linn., a common tree grown in this region, decreases under water stress, but the mechanism responsible is not clear. The objective of this study was to investigate the effects of drought stress on photosynthesis and the relationship between photosynthetic variables and soil water contents to help us better understand the photophysiological characteristics of H. rhamnoides under water stress and guide cultivation in the loess hilly region. Here,gas exchange, chlorophyll fluorescence and antioxidant enzyme activity in leaves of 3-year-old saplings of H.rhamnoides grown in pots were tested under eight soil water conditions. When soil water content(RWC) was between 38.9 and 70.5 %, stomatal limitation was responsible for the reduced net photosynthetic rate(PN).When RWC was lower than 38.9 %, nonstomatal limitation was the main factor restricting PN. Moderate water stress improved the water use efficiency(WUE) of the leaf.Water stress significantly influenced fluorescence variables and the antioxidant enzyme system. When RWC was between 38.9 and 70.5 %, nonphotochemical quenching(NPQ) increased and then decreased, indicating that thermal energy dissipation was a significant photoprotection mechanism. Antioxidant enzymes were activated when RWC ranged from 48.3 to 70.5 %; under severe water stress(RWC / 38.9 %), the antioxidant enzyme system was damaged, the activity of the antioxidant enzymes declined, and membranes were damaged. In the semiarid loess hilly region, RWC between 58.6 and 70.5 % was the economic water threshold value that maintained higher WUE and PN, and the maximum soil water deficit level that could sustain H. rhamnoides was RWC of 38.9 %.展开更多
The regulation of plant transpiration is a key factor affecting transpiration efficiency, growth and adaptation of Eucalyptus species to limited water availability in tropical and subtropical environments. However, fe...The regulation of plant transpiration is a key factor affecting transpiration efficiency, growth and adaptation of Eucalyptus species to limited water availability in tropical and subtropical environments. However, few studies have related this trait to the performance of Eucalyptus seedlings and none have investigated the influence of vapor pressure deficit (VPD) on transpiration rates and growth. In this study, the transpiration and growth responses of seedlings of Eucalyptus urophylla (S.T. Blake) and Eucalyptus cloeziana (F. Muell.) to progressive soil water deficits were evaluated under semi-controlled conditions using the fraction of transpirable soil water (FTSW) method. In addition, the influence of VPD on seedling transpiration, development and growth was also investigated. The FTSW threshold ranged from 0.40 to 0.99 for the transpiration rate and from 0.32 to 0.97 for the development and growth variables. Little or no changes in the FTSW threshold were detected in response to changes in atmospheric VPD. Both Eucalyptus species presented a conservation strategy under drought stress. In addition, water-conserving mechanisms during the seedling phase were related to rapid stomatal closure, reduced leaf area, and number of leaves.展开更多
Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean cu...Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean curvature fM H2dA The bound is the Minkowski quermassintegral of the convex body K. The total square of mean curvature attains the lower bound when M is an (n - 1)-sphere.展开更多
BACKGROUND:According to the literature,generalized seizure as a presenting sign of stroke is rare,and in the reported cases it was accompanied by a focal neurological deficit.Presentation of a small ischemic atherothr...BACKGROUND:According to the literature,generalized seizure as a presenting sign of stroke is rare,and in the reported cases it was accompanied by a focal neurological deficit.Presentation of a small ischemic atherothrombotic brain infarction with convulsive generalized seizure is very rare.METHODS:We reported a patient with acute small ischemic atherothrombotic infarction associated with an episode of generalized tonic-clonic seizure,a rare clinical manifestation in this type of stroke.The patient was treated with anti-epileptic therapy after admission.RESULTS:The patient was discharged with oral administration of phenytoin 100 mg TDS,aspirin 80 mg daily,and atorvastatin 40 mg daily.CONCLUSION:Small ischemic atherothrombotic infarction can present only with a seizure without any focal neurological deficit.展开更多
Plants hold biochemical and physiological mechanisms to withstand drought conditions.Generally,depending on water deficit interval,plant rehydration relies on how it can retain growth or a positive water balance—or r...Plants hold biochemical and physiological mechanisms to withstand drought conditions.Generally,depending on water deficit interval,plant rehydration relies on how it can retain growth or a positive water balance—or rarely both.In this study,two species of Hymenaea,one from the Amazon and the other from the Brazilian Cerrado,were investigated for their physiological mechanism associated with growth rehydration upon short-term exposure to drought stress.Our findings demonstrate that Hymenaea courbaril tends to invest in nitrogen to the detriment of carbon compounds,-as it is limited by lower net photosynthesis-and adjust root growth to attenuate drought stress responses.In contrast,Hymenaea stigonocarpa takes advantage of higher water potential and a basal rate of lower net photosynthesis to support aboveground growth under such conditions.Hence,it is postulated that there are distinct ways of controlling water status and growth between H.courbaril and H.stigonocarpa,which are determined either by the ability of the species to keep net photosynthesis at low levels of water content or by favoring the accumulation of nitrogen compounds.Both mechanisms were effective with regards to water use efficiency and thus it is reasonable to suggest that strategies are not exclusive and may work under adverse conditions,as observed in Amazon and Brazilian Cerrado biomes.Query.展开更多
Background:Plasticity in response to environmental drivers can help trees cope with droughts.However,our understanding of the importance of plasticity and physiological adjustments in trees under global change is limi...Background:Plasticity in response to environmental drivers can help trees cope with droughts.However,our understanding of the importance of plasticity and physiological adjustments in trees under global change is limited.Methods:We used the International Tree-Ring Data Bank(ITRDB)to examine 20th century growth responses in conifer trees during(resistance)and following(resilience)years of severe soil and atmospheric droughts occurring in isolation or as compound events.Growth resilience indices were calculated using observed growth divided by expected growth to avoid spurious correlations,in which the expected values were obtained by the autoregressive moving average(ARIMA)model.We used high atmospheric vapour pressure deficit(VPD)to select years of atmospheric drought and low annual values of the Standardized Precipitation-Evapotranspiration Index(SPEI)to select years with soil drought.We acquired the sensitivities(i.e.,the slopes of the relationships)by fitting the resilience indices as a function of environmental drivers,and assessed how these sensitivities changed over time for different types of drought events using linear mixed models.We also checked whether plasticity in growth responses was sufficient to prevent long-term trends of growth reductions during or after severe droughts.We acknowledge that by focusing on the response of surviving trees from the ITRDB we are potentially biasing our results towards higher resilience,as stand level responses(e.g.,mortality)may result in lowered competition after the disturbance event.Results:Sensitivities of resilience to VPD and SPEI changed throughout the 20th century,with the directions of these changes often reversing in the second half of the century.For the 1961–2010 period,changing sensitivities had positive effects on resilience,especially following years of high-VPD and compound events,avoiding growth losses that would have occurred if sensitivities had remained constant.Despite sensitivity changes,resilience was still lower at the end of the 20th century compared to the beginning of the century.Conclusions:Future adjustments to low-SPEI and high-VPD events are likely to continue to compensate for the trends in climate only partially,leading to further generalized reductions in tree growth of conifers.An improved understanding of these plastic adjustments and their limits,as well as potential compensatory processes at the stand level,is needed to project forest responses to climate change.展开更多
The tropical arboreal species Brazilian mahogany(Swietenia macrophylla) is very important economically and ecologically,for which understanding ecophysiological variables such as sap flow will improve understanding of...The tropical arboreal species Brazilian mahogany(Swietenia macrophylla) is very important economically and ecologically,for which understanding ecophysiological variables such as sap flow will improve understanding of the species and its cultivation.This paper aims to measure uncertainties(U) involved in the application of the heat ratio method for determining sap flow in Brazilian mahogany using sets of heating probes and thermometers installed on plants of 18 months of age,cultivated in Yellow Latosol,under a weighing lysimeter and located in a protected environment.The uncertainty in sap flow was calculated as the combination of uncertainty in the thermal diffusivity(U_(k)),conductive section(U_(Sc)) and corrected sap velocity(U_(Vc)).U_(k) had greater weight in determining the flow of sap in Brazilian mahogany,when compared to U_(Sc) and U_(Vc).The thermal diffusivity during the cycle,or period evaluated,must be adjusted to improve the accuracy of the heat ratio method because the sap flow overestimated transpiration by 15.0%.When soil water was optimal In addition,the vapor pressure deficit linearly and indirectly influenced the SF with a difference of 14.6%.展开更多
The definitions of strong superadditive deficit for relative entropy coherence and monogamy deficit of measurement-dependent global quantum discord are proposed.The equivalence between them is proved,which provides a ...The definitions of strong superadditive deficit for relative entropy coherence and monogamy deficit of measurement-dependent global quantum discord are proposed.The equivalence between them is proved,which provides a useful criterion for the validity of the strong superadditive inequality of relative entropy coherence.In addition,the strong superadditive deficit of rela.tive entropy coherence is proved to be greater than or equal to zero under the condition that bipartite measurement-dependent global quantum discord(GQD)does not increase under the discarding of subsystems.Using the Monte Carlo method,it is shown that both the strong superadditive inequality of relative entropy coherence and the monogamy inequality of measurement-dependent GQD are established under general circumstances.The bipartite measurement-dependent GQD does not increase under the discarding of subsystems.The multipartite situation is also discussed in detail.展开更多
Seasonal patterns of wood formation(xylogenesis)remain understudied in mixed pine-oak forests despite their contribution to tree coexistence through temporal niche complementarity.Xylogenesis was assessed in three pin...Seasonal patterns of wood formation(xylogenesis)remain understudied in mixed pine-oak forests despite their contribution to tree coexistence through temporal niche complementarity.Xylogenesis was assessed in three pine species(Pinus cembroides,Pinus leiophylla,Pinus engelmannii)and one oak(Quercus grisea)coexisting in a semi-arid Mexican forest.The main xylogenesis phases(production of cambium cells,radial enlargement,cell-wall thickening and maturation)were related to climate data considering 5-15-day temporal windows.In pines,cambium activity maximized from mid-March to April as temperature and evaporation increased,whereas cell radial enlargement peaked from April to May and was constrained by high evaporation and low precipitation.Cell-wall thickening peaked from June to July and in August-September as maximum temperature and vapour pressure deficit(VPD)increased.Maturation of earlywood and latewood tracheids occurred in May-June and June-July,enhanced by high minimum temperatures and VPD in P.engelmannii and P.leiophylla.In oak,cambial onset started in March,constrained by high minimum temperatures,and vessel radial enlargement and radial increment maximized in April as temperatures and evaporation increased,whereas early wood vessels matured from May to June as VPD increased.Overall,15-day wet conditions enhanced cell radial enlargement in P.leiophylla and P.engelmannii,whereas early-summer high 15-day temperature and VPD drove cell-wall thickening in P.cembroides.Warm night conditions and high evaporation rates during spring and summer enhanced growth.An earlier growth peak in oak and a higher responsiveness to spring-summer water demand in pines contributed to their coexistence.展开更多
Quantifying the variation in stomatal behavior and functional traits of trees with elevation can provide a better understanding of the adaptative strategies to a changing climate. In this study, six water-and carbon-r...Quantifying the variation in stomatal behavior and functional traits of trees with elevation can provide a better understanding of the adaptative strategies to a changing climate. In this study, six water-and carbon-related functional traits were examined for three dominant tree species, Schima superba, Pinus massoniana and Castanopsis chinensis, in a mixed coniferous and broad-leaved forest at two elevations(70 and 360 m above sea level,respectively) in low subtropical China. We hypothesized that trees at higher elevations would develop more efficient strategies of stomatal regulations and greater water transport capacity to cope with more variable hydrothermal conditions than those at lower elevations. Results show that the hydraulic conductivity did not differ between trees at the two elevations, contrary to our expectation. The C. chinensis trees had greater values of leaf mass per unit area(LMA), and the S. superba and C. chinensis trees had greater values of wood density(WD),relative stem water content(RWC), and ratio of sapwood area to leaf area(Hv) at the 360-m elevation than at 70-m elevation. The mean canopy stomatal conductance was greater and more sensitive to vapor deficit pressure at360 m than at 70 m for both S. superba and C. chinensis, while stomatal sensitivity did not differ between the two contrasting elevations for P. massoniana. The midday leaf water potential(ψL) in P. massoniana was significantly more negative at 360 m than at 70 m, but did not vary with increasing elevation in both S. superba and C. chinensis.Variations in Hvcan be related to the differential stomatal behaviors between the two elevations. The variations of stomatal behavior and ψLwith elevation suggested the isohydric strategy for the two broad-leaved species and the anisohydric strategy for the conifer species. The species-specific differences in LMA, WD, RWC, and Hvbetween the two elevations may reflect conservative resource use strategies at the higher elevation. Our findings revealed a close relationship between hydraulic and stomatal behavior and may help better understand the functional responses of forests to changing environmental conditions.展开更多
In this survey article,we present two applications of surface curvatures in theoretical physics.The first application arises from biophysics in the study of the shape of cell vesicles involving the minimization of a m...In this survey article,we present two applications of surface curvatures in theoretical physics.The first application arises from biophysics in the study of the shape of cell vesicles involving the minimization of a mean curvature type energy called the Helfrich bending energy.In this formalism,the equilibrium shape of a cell vesicle may present itself in a rich variety of geometric and topological characteristics.We first show that there is an obstruction,arising from the spontaneous curvature,to the existence of a minimizer of the Helfrich energy over the set of embedded ring tori.We then propose a scale-invariant anisotropic bending energy,which extends the Canham energy,and show that it possesses a unique toroidal energy minimizer,up to rescaling,in all parameter regime.Furthermore,we establish some genus-dependent topological lower and upper bounds,which are known to be lacking with the Helfrich energy,for the proposed energy.We also present the shape equation in our context,which extends the Helfrich shape equation.The second application arises from astrophysics in the search for a mechanism for matter accretion in the early universe in the context of cosmic strings.In this formalism,gravitation may simply be stored over a two-surface so that the Einstein tensor is given in terms of the Gauss curvature of the surface which relates itself directly to the Hamiltonian energy density of the matter sector.This setting provides a lucid exhibition of the interplay of the underlying geometry,matter energy,and topological characterization of the system.In both areas of applications,we encounter highly challenging nonlinear partial differential equation problems.We demonstrate that studies on these equations help us to gain understanding of the theoretical physics problems considered.展开更多
基金Supported by the Foundation of State Key Laboratory of Explosion Science and Technology(YBKT10-04)
文摘In order to study the detonation velocity deficits of bending flexible detonating fuses,a physical model and a theoretical mathematical equation of detonation velocity deficits for bending flexible detonation fuses were established based on the detonation wave's corner effects and delay time phenomenon by using non-dimensional analysis method.Besides,a semi-empirical formula of detonation velocity deficit for bending fuses in the same charge size was obtained through experiment and curve fitting.The result shows that an exponential relationship between the detonation velocity deficits and reciprocal of curvature radius.
文摘BACKGROUND: The use and abuse of designer drugs has been recognized for decades; however there are many derivatives of compounds that make their way into the community. Abuse of compound(s) known on the street as "bath salt" is on the rise.METHODS: We report the case of a 33-year-old man who complained of "flashbacks" and right arm shaking that followed a night of "bath salt" snorting. The active compound methylenedioxypyrovalerone methamphetamine(MDPV) was confirmed; however, analysis of three different "bath salt" products showed difference in their active components.RESULTS: The patient's symptoms remained stable and he was discharged home after observation in the emergency department with instructions to return for any symptom progression.CONCLUSION: Practitioners should be aware of the abuse of the compounds and that not all "bath salt" products contain MDPV.
基金supported by the National Natural Science Foundation of China(Nos.41621061,31500511)the Natural Science Foundation of Shandong Province of China(No.ZR2015CL044)
文摘To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa(Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate(PN), stomatal conductance(gs), and water-use efficiency(WUE) in the seedlings exhibited a clear threshold response to the relative soil water content(RSWC). The highest PNand WUEoccurred at RSWCof51.84 and 64.10%, respectively. Both PNand WUEwere higher than the average levels at 39.79% B RSWCB 73.04%. When RSWCdecreased from 51.84 to 37.52%,PN, gs, and the intercellular CO2 concentration(Ci)markedly decreased with increasing drought stress; the corresponding stomatal limitation(Ls) substantially increased, and nonphotochemical quenching(NPQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II(PSII) in the form of heat, and the reduction in PNwas primarily due to stomatal limitation.While RSWCdecreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry(Fv/Fm) and the effective quantum yield of PSII photochemistry(UPSII), photochemical quenching(qP), and NPQ; in contrast, minimal fluorescence yield of the dark-adapted state(F0) increased markedly. Thus,the major limiting factor for the PNreduction changed to a nonstomatal limitation due to PSII damage. Therefore, an RSWCof 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% B RSWCB 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F.suspensa.
文摘In this article, the expected discounted penalty function Фδ,α (u) with constant interest δ and "discounted factor" exp(-αTδ) is considered. As a result, the integral equation of Фδ,α (u) is derived and an exact solution for Фδ,α (0) is found. The relation between the joint density of the surplus immediately prior to ruin, and the deficit at ruin and the density of the surplus immediately prior to ruin is then obtained based on analytical methods.
基金The National Natural Science Foundation of China(No.4143074741401013)
文摘Continuous recording of precipitation and soil water content(SWC), especially during long periods of torrential rainfall, has proven challenging. Over a 16 h period spanning 21-22 July, 2012, Beijing experienced historic rainfall that totaled 164.4 mm. We used large lysimeter technology in four forested plots to record precipitation and variation in SWC at 10-min intervals to quantify the response of forestland SWC to heavy rainfall in a semi-arid area. Mean,maximum and minimum rainfall intensities were 23.4, 46.8and 12.0 mm/h, respectively. Rainfall was concentrated in 2-6 mm bursts that accounted for 67.32 % of the total rainfall event. Soil moisture conditions in this region are strongly dependent on patterns of precipitation. Water infiltration into 20, 40, 60, 80, 100, 120 and 160 cm soil layers required 1, 5,20, 37, 46, 52 and 61 mm of precipitation, respectively, and to fully saturate these soil layers required 80, 120, 140, 150, 180,200 and 220 mm of precipitation, respectively.
基金supported by the National Natural Science Foundation of China(62074037,52002073)the Science and Technology Department of Fujian Province(2020I0006)+3 种基金the Natural Science Foundation of Fujian Province(2019J01218)the Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ124)the Education and Scientific Research Project of Fujian Province(JAT200372)the Scientific Research Project of Fujian Jiangxia University(JXZ2019006)。
文摘The passivation of non-radiative states and inhibition of band tailings are desirable for improving the open-circuit voltage(V_(oc))of CZTSSe thin-film solar cells.Recently,alkali metal doping has been investigated to passivate defects in CZTSSe films.Herein,we investigate Li doping effects by applying Li OH into CZTSSe precursor solutions,and verify that carrier transport is enhanced in the CZTSSe solar cells.Systematic characterizations demonstrate that Li doping can effectively passivate non-radiative recombination centers and reduce band tailings of the CZTSSe films,leading to the decrease in total defect density and the increase in separation distance between donor and acceptor.Fewer free carriers are trapped in the band tail states,which speeds up carrier transport and reduces the probability of deep-level defects capturing carriers.The charge recombination lifetime is about twice as long as that of the undoped CZTSSe device,implying the heterojunction interface recombination is also inhibited.Besides,Li doping can increase carrier concentration and enhance build-in voltage,leading to a better carrier collection.By adjusting the Li/(Li+Cu)ratio to 18%,the solar cell efficiency is increased significantly to 9.68%with the fill factor(FF)of 65.94%,which is the highest FF reported so far for the flexible CZTSSe solar cells.The increased efficiency is mainly attributed to the reduction of V_(oc)deficit and the improved CZTSSe/Cd S junction quality.These results open up a simple route to passivate non-radiative states and reduce the band tailings of the CZTSSe films and improve the efficiency of the flexible CZTSSe solar cells.
基金Supported in part by the National Natural Science Foundation of China and the Ministry of Education of China
文摘We consider a continuous time risk model based on a two state Markov process, in which after an exponentially distributed time, the claim frequency changes to a different level and can change back again in the same way. We derive the Laplace transform for the first passage time to surplus zero from a given negative surplus and for the duration of negative surplus. Closed-form expressions are given in the case of exponential individual claim. Finally, numerical results are provided to show how to estimate the moments of duration of negative surplus.
基金supported by Monitoring and Evaluation Report on Shandong Ecological Afforestation Program(SEAP)of The World Bank Loan(No.SEAP-JC-2)
文摘Water deficit is one of the major limiting factors in vegetation recovery and reconstruction in the semi-arid area of loess hilly regions. Leaf photosynthesis in Hippophae rhamnoides Linn., a common tree grown in this region, decreases under water stress, but the mechanism responsible is not clear. The objective of this study was to investigate the effects of drought stress on photosynthesis and the relationship between photosynthetic variables and soil water contents to help us better understand the photophysiological characteristics of H. rhamnoides under water stress and guide cultivation in the loess hilly region. Here,gas exchange, chlorophyll fluorescence and antioxidant enzyme activity in leaves of 3-year-old saplings of H.rhamnoides grown in pots were tested under eight soil water conditions. When soil water content(RWC) was between 38.9 and 70.5 %, stomatal limitation was responsible for the reduced net photosynthetic rate(PN).When RWC was lower than 38.9 %, nonstomatal limitation was the main factor restricting PN. Moderate water stress improved the water use efficiency(WUE) of the leaf.Water stress significantly influenced fluorescence variables and the antioxidant enzyme system. When RWC was between 38.9 and 70.5 %, nonphotochemical quenching(NPQ) increased and then decreased, indicating that thermal energy dissipation was a significant photoprotection mechanism. Antioxidant enzymes were activated when RWC ranged from 48.3 to 70.5 %; under severe water stress(RWC / 38.9 %), the antioxidant enzyme system was damaged, the activity of the antioxidant enzymes declined, and membranes were damaged. In the semiarid loess hilly region, RWC between 58.6 and 70.5 % was the economic water threshold value that maintained higher WUE and PN, and the maximum soil water deficit level that could sustain H. rhamnoides was RWC of 38.9 %.
基金This study was supported by Minas Gerais Research Founding(FAPEMIG-projects APQ-01392-13 and APQ 01,258-17).
文摘The regulation of plant transpiration is a key factor affecting transpiration efficiency, growth and adaptation of Eucalyptus species to limited water availability in tropical and subtropical environments. However, few studies have related this trait to the performance of Eucalyptus seedlings and none have investigated the influence of vapor pressure deficit (VPD) on transpiration rates and growth. In this study, the transpiration and growth responses of seedlings of Eucalyptus urophylla (S.T. Blake) and Eucalyptus cloeziana (F. Muell.) to progressive soil water deficits were evaluated under semi-controlled conditions using the fraction of transpirable soil water (FTSW) method. In addition, the influence of VPD on seedling transpiration, development and growth was also investigated. The FTSW threshold ranged from 0.40 to 0.99 for the transpiration rate and from 0.32 to 0.97 for the development and growth variables. Little or no changes in the FTSW threshold were detected in response to changes in atmospheric VPD. Both Eucalyptus species presented a conservation strategy under drought stress. In addition, water-conserving mechanisms during the seedling phase were related to rapid stomatal closure, reduced leaf area, and number of leaves.
文摘Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean curvature fM H2dA The bound is the Minkowski quermassintegral of the convex body K. The total square of mean curvature attains the lower bound when M is an (n - 1)-sphere.
文摘BACKGROUND:According to the literature,generalized seizure as a presenting sign of stroke is rare,and in the reported cases it was accompanied by a focal neurological deficit.Presentation of a small ischemic atherothrombotic brain infarction with convulsive generalized seizure is very rare.METHODS:We reported a patient with acute small ischemic atherothrombotic infarction associated with an episode of generalized tonic-clonic seizure,a rare clinical manifestation in this type of stroke.The patient was treated with anti-epileptic therapy after admission.RESULTS:The patient was discharged with oral administration of phenytoin 100 mg TDS,aspirin 80 mg daily,and atorvastatin 40 mg daily.CONCLUSION:Small ischemic atherothrombotic infarction can present only with a seizure without any focal neurological deficit.
基金Coordination for the Improvement of Higher Education Personnel(CAPES)。
文摘Plants hold biochemical and physiological mechanisms to withstand drought conditions.Generally,depending on water deficit interval,plant rehydration relies on how it can retain growth or a positive water balance—or rarely both.In this study,two species of Hymenaea,one from the Amazon and the other from the Brazilian Cerrado,were investigated for their physiological mechanism associated with growth rehydration upon short-term exposure to drought stress.Our findings demonstrate that Hymenaea courbaril tends to invest in nitrogen to the detriment of carbon compounds,-as it is limited by lower net photosynthesis-and adjust root growth to attenuate drought stress responses.In contrast,Hymenaea stigonocarpa takes advantage of higher water potential and a basal rate of lower net photosynthesis to support aboveground growth under such conditions.Hence,it is postulated that there are distinct ways of controlling water status and growth between H.courbaril and H.stigonocarpa,which are determined either by the ability of the species to keep net photosynthesis at low levels of water content or by favoring the accumulation of nitrogen compounds.Both mechanisms were effective with regards to water use efficiency and thus it is reasonable to suggest that strategies are not exclusive and may work under adverse conditions,as observed in Amazon and Brazilian Cerrado biomes.Query.
基金TZ acknowledges contribution from the China Scholarship Council(CSC)MM and JM-V received support from the Spanish Ministry of Science and Innovation(MICINN)via competitive grant CGL2017-89149-C2-1-RAG and JJC were supported by the FUNDIVER project of the Spanish Ministry of Science and Innovation(CGL2015-69186-C2-1-R).
文摘Background:Plasticity in response to environmental drivers can help trees cope with droughts.However,our understanding of the importance of plasticity and physiological adjustments in trees under global change is limited.Methods:We used the International Tree-Ring Data Bank(ITRDB)to examine 20th century growth responses in conifer trees during(resistance)and following(resilience)years of severe soil and atmospheric droughts occurring in isolation or as compound events.Growth resilience indices were calculated using observed growth divided by expected growth to avoid spurious correlations,in which the expected values were obtained by the autoregressive moving average(ARIMA)model.We used high atmospheric vapour pressure deficit(VPD)to select years of atmospheric drought and low annual values of the Standardized Precipitation-Evapotranspiration Index(SPEI)to select years with soil drought.We acquired the sensitivities(i.e.,the slopes of the relationships)by fitting the resilience indices as a function of environmental drivers,and assessed how these sensitivities changed over time for different types of drought events using linear mixed models.We also checked whether plasticity in growth responses was sufficient to prevent long-term trends of growth reductions during or after severe droughts.We acknowledge that by focusing on the response of surviving trees from the ITRDB we are potentially biasing our results towards higher resilience,as stand level responses(e.g.,mortality)may result in lowered competition after the disturbance event.Results:Sensitivities of resilience to VPD and SPEI changed throughout the 20th century,with the directions of these changes often reversing in the second half of the century.For the 1961–2010 period,changing sensitivities had positive effects on resilience,especially following years of high-VPD and compound events,avoiding growth losses that would have occurred if sensitivities had remained constant.Despite sensitivity changes,resilience was still lower at the end of the 20th century compared to the beginning of the century.Conclusions:Future adjustments to low-SPEI and high-VPD events are likely to continue to compensate for the trends in climate only partially,leading to further generalized reductions in tree growth of conifers.An improved understanding of these plastic adjustments and their limits,as well as potential compensatory processes at the stand level,is needed to project forest responses to climate change.
基金supported by the Ministry of Science,Technology,Innovation,Communication(MCTIC)the Foundation for Research Support of Goias State(FAPEG)+2 种基金the National Council for Scientific and Technological Development (CNPq)the Federal Institute Goiano (IF Goiano)the Federal University of B ahia Reconcavo (UFRB)。
文摘The tropical arboreal species Brazilian mahogany(Swietenia macrophylla) is very important economically and ecologically,for which understanding ecophysiological variables such as sap flow will improve understanding of the species and its cultivation.This paper aims to measure uncertainties(U) involved in the application of the heat ratio method for determining sap flow in Brazilian mahogany using sets of heating probes and thermometers installed on plants of 18 months of age,cultivated in Yellow Latosol,under a weighing lysimeter and located in a protected environment.The uncertainty in sap flow was calculated as the combination of uncertainty in the thermal diffusivity(U_(k)),conductive section(U_(Sc)) and corrected sap velocity(U_(Vc)).U_(k) had greater weight in determining the flow of sap in Brazilian mahogany,when compared to U_(Sc) and U_(Vc).The thermal diffusivity during the cycle,or period evaluated,must be adjusted to improve the accuracy of the heat ratio method because the sap flow overestimated transpiration by 15.0%.When soil water was optimal In addition,the vapor pressure deficit linearly and indirectly influenced the SF with a difference of 14.6%.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11775177,11775178,11647057 and 11705146the Special Research Funds of Shaanxi Province Department of Education under Grant No 16JK1759+5 种基金the Basic Research Plan of Natural Science in Shaanxi Province under Grant No 2018JQ1014the Major Basic Research Program of Natural Science of Shaanxi Province under Grant No 2017ZDJC-32the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province under Grant No 2017KCT-12the Northwest University Scientific Research Funds under Grant No15NW26the Double First-Class University Construction Project of Northwest Universitythe Australian Research Council through Discovery Projects under Grant No DP190101529
文摘The definitions of strong superadditive deficit for relative entropy coherence and monogamy deficit of measurement-dependent global quantum discord are proposed.The equivalence between them is proved,which provides a useful criterion for the validity of the strong superadditive inequality of relative entropy coherence.In addition,the strong superadditive deficit of rela.tive entropy coherence is proved to be greater than or equal to zero under the condition that bipartite measurement-dependent global quantum discord(GQD)does not increase under the discarding of subsystems.Using the Monte Carlo method,it is shown that both the strong superadditive inequality of relative entropy coherence and the monogamy inequality of measurement-dependent GQD are established under general circumstances.The bipartite measurement-dependent GQD does not increase under the discarding of subsystems.The multipartite situation is also discussed in detail.
基金funded by the Mexican CONACYT(Grant Number CB-2013/222522-A1-S-21471)the Mexican dendroecology network(https://dendrored.ujed.mx)。
文摘Seasonal patterns of wood formation(xylogenesis)remain understudied in mixed pine-oak forests despite their contribution to tree coexistence through temporal niche complementarity.Xylogenesis was assessed in three pine species(Pinus cembroides,Pinus leiophylla,Pinus engelmannii)and one oak(Quercus grisea)coexisting in a semi-arid Mexican forest.The main xylogenesis phases(production of cambium cells,radial enlargement,cell-wall thickening and maturation)were related to climate data considering 5-15-day temporal windows.In pines,cambium activity maximized from mid-March to April as temperature and evaporation increased,whereas cell radial enlargement peaked from April to May and was constrained by high evaporation and low precipitation.Cell-wall thickening peaked from June to July and in August-September as maximum temperature and vapour pressure deficit(VPD)increased.Maturation of earlywood and latewood tracheids occurred in May-June and June-July,enhanced by high minimum temperatures and VPD in P.engelmannii and P.leiophylla.In oak,cambial onset started in March,constrained by high minimum temperatures,and vessel radial enlargement and radial increment maximized in April as temperatures and evaporation increased,whereas early wood vessels matured from May to June as VPD increased.Overall,15-day wet conditions enhanced cell radial enlargement in P.leiophylla and P.engelmannii,whereas early-summer high 15-day temperature and VPD drove cell-wall thickening in P.cembroides.Warm night conditions and high evaporation rates during spring and summer enhanced growth.An earlier growth peak in oak and a higher responsiveness to spring-summer water demand in pines contributed to their coexistence.
基金funded by the National Natural Science Foundation of China,grant number 32171501 and 31770646the Guangdong Basic and Applied Basic Research Foundation,grant number2021A1515012486。
文摘Quantifying the variation in stomatal behavior and functional traits of trees with elevation can provide a better understanding of the adaptative strategies to a changing climate. In this study, six water-and carbon-related functional traits were examined for three dominant tree species, Schima superba, Pinus massoniana and Castanopsis chinensis, in a mixed coniferous and broad-leaved forest at two elevations(70 and 360 m above sea level,respectively) in low subtropical China. We hypothesized that trees at higher elevations would develop more efficient strategies of stomatal regulations and greater water transport capacity to cope with more variable hydrothermal conditions than those at lower elevations. Results show that the hydraulic conductivity did not differ between trees at the two elevations, contrary to our expectation. The C. chinensis trees had greater values of leaf mass per unit area(LMA), and the S. superba and C. chinensis trees had greater values of wood density(WD),relative stem water content(RWC), and ratio of sapwood area to leaf area(Hv) at the 360-m elevation than at 70-m elevation. The mean canopy stomatal conductance was greater and more sensitive to vapor deficit pressure at360 m than at 70 m for both S. superba and C. chinensis, while stomatal sensitivity did not differ between the two contrasting elevations for P. massoniana. The midday leaf water potential(ψL) in P. massoniana was significantly more negative at 360 m than at 70 m, but did not vary with increasing elevation in both S. superba and C. chinensis.Variations in Hvcan be related to the differential stomatal behaviors between the two elevations. The variations of stomatal behavior and ψLwith elevation suggested the isohydric strategy for the two broad-leaved species and the anisohydric strategy for the conifer species. The species-specific differences in LMA, WD, RWC, and Hvbetween the two elevations may reflect conservative resource use strategies at the higher elevation. Our findings revealed a close relationship between hydraulic and stomatal behavior and may help better understand the functional responses of forests to changing environmental conditions.
基金Supported by National Natural Science Foundation of China(Grant No.11471100)。
文摘In this survey article,we present two applications of surface curvatures in theoretical physics.The first application arises from biophysics in the study of the shape of cell vesicles involving the minimization of a mean curvature type energy called the Helfrich bending energy.In this formalism,the equilibrium shape of a cell vesicle may present itself in a rich variety of geometric and topological characteristics.We first show that there is an obstruction,arising from the spontaneous curvature,to the existence of a minimizer of the Helfrich energy over the set of embedded ring tori.We then propose a scale-invariant anisotropic bending energy,which extends the Canham energy,and show that it possesses a unique toroidal energy minimizer,up to rescaling,in all parameter regime.Furthermore,we establish some genus-dependent topological lower and upper bounds,which are known to be lacking with the Helfrich energy,for the proposed energy.We also present the shape equation in our context,which extends the Helfrich shape equation.The second application arises from astrophysics in the search for a mechanism for matter accretion in the early universe in the context of cosmic strings.In this formalism,gravitation may simply be stored over a two-surface so that the Einstein tensor is given in terms of the Gauss curvature of the surface which relates itself directly to the Hamiltonian energy density of the matter sector.This setting provides a lucid exhibition of the interplay of the underlying geometry,matter energy,and topological characterization of the system.In both areas of applications,we encounter highly challenging nonlinear partial differential equation problems.We demonstrate that studies on these equations help us to gain understanding of the theoretical physics problems considered.