The classical EPQ model has been used for a long ti me and is widely accepted and implemented. Nevertheless, the analysis for finding an economic lot size has based on a number of unrealistic assumptions. A common unr...The classical EPQ model has been used for a long ti me and is widely accepted and implemented. Nevertheless, the analysis for finding an economic lot size has based on a number of unrealistic assumptions. A common unrealistic assumption in using EPQ is that all units produced are of good quali ty. The classical EPQ model shows that the optimal lot size will generate minimum ma nufacturing cost, thus producing minimum setup cost and inventory cost. However, this is only true if all products manufactured in the process are assumed to be of good quality (i.e. all products are within the specification limits). In rea lity this is not the case, therefore, it is necessary to consider the cost of im perfect quality items, because this cost can influence the economic lot size. Ma ny studies and recent papers have indicated that there is a significant relation ship between economic production lot size and process/product quality. However, their models included either the imperfect quality items (not necessarily de fective) which are to be sold at a discounted price or defective items which can be reworked or rejected. The aim of this paper is to provide a framework to integrate three different sit uations (discounted pricing/rework/reject) into a single model. 100% inspection is performed in order to distinguish the amount of good quality items, imper fect quality items and defective items in each lot. In this paper, a mathematica l model is developed, and a numerical example is presented to illustrate the sol ution procedures. It is found that the economic production lot size tends to inc rease as the average percentage of imperfect quality items and defectives (rejec ted items) increases.展开更多
Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,an...Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.展开更多
Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel...Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.展开更多
Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significan...Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significance for the high-quality illumination of phosphor-converted WLEDs.Here,a novel red-emitting phosphor K_(2)Zn(PO_(3))_(4)∶Mn^(2+)is synthesized by standard high temperature solid state reaction in ambient atmosphere,which is a new member of self-reduction system.An effective synthesis strategy is proposed to optimize its photoluminescent performances.Combined with X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy,oxygen vacancy defects introduced by Mn doping are proved to play an important role in the transition of Mn^(4+)→Mn^(2+).Thermoluminescence analysis reveals that the distribution of trap levels,especially the deep ones,is effectively regulated by the controllable crystallization and significantly affect the thermal stability of phosphors.Then a defect-assisted model is proposed to address the inner mechanism of the phenomenon.The carriers trapped by deep trap levels can be released under the high-temperature stimulus,which return back to the luminescent centers and participate in the radiative recombination to improve thermal stability.This study provides a new crystallographic idea and theoretical support for obtaining luminescent materials with high thermal stability.展开更多
The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy beco...The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy becomes defect dipole,which prevents the domain rotation.In this field,a serious problem is that generally,Qm decreases as the temperature(T)increases,since the oxygen vacancies are decoupled from the defect dipoles.In this work,Q_(m) of Pb_(0.95)Sr_(0.05)(Zr_(0.53)Ti_(0.47))O_(3)(PSZT)ceramics doped by 0.40%Fe_(2)O_(3)(in mole)abnormally increases as T increases,of which the Qm and piezoelectric coefficient(d_(33))at room temperature and Curie temperature(TC)are 507,292 pC/N,and 345℃,respectively.The maximum Qm of 824 was achieved in the range of 120–160℃,which is 62.52%higher than that at room temperature,while the dynamic piezoelectric constant(d_(31))was just slightly decreased by 3.85%.X-ray diffraction(XRD)and piezoresponse force microscopy results show that the interplanar spacing and the fine domains form as temperature increases,and the thermally stimulated depolarization current shows that the defect dipoles are stable even the temperature up to 240℃.It can be deduced that the aggregation of oxygen vacancies near the fine domains and defect dipole can be stable up to 240℃,which pins domain rotation,resulting in the enhanced Q_(m) with the increasing temperature.These results give a potential path to design high Q_(m) at high temperature.展开更多
Lutetium oxide(Lu_(2)O_(3))is recognized as a potential laser crystal material,and it is noted for its high ther⁃mal conductivity,low phonon energy,and strong crystal field.Nevertheless,its high melting point of 2450...Lutetium oxide(Lu_(2)O_(3))is recognized as a potential laser crystal material,and it is noted for its high ther⁃mal conductivity,low phonon energy,and strong crystal field.Nevertheless,its high melting point of 2450℃induces significant temperature gradients,resulting in a proliferation of defects.The scarcity of comprehensive research on this crystal’s defects hinders the enhancement of crystal quality.In this study,we employed the chemical etching method to examine the etching effects on Lu_(2)O_(3)crystals under various conditions and to identify the optimal conditions for investi⁃gating the dislocation defects of Lu_(2)O_(3)crystals(mass fraction 70%H3PO4,160℃,15-18 min).The morphologies of dislocation etch pits on the(111)-and(110)-oriented Lu_(2)O_(3)wafers were characterized using microscopy,scanning electron microscopy and atomic force microscopy.This research addresses the gap in understanding Lu_(2)O_(3)line defects and offers guidance for optimizing the crystal growth process and improving crystal quality.展开更多
Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation p...Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz.展开更多
Objective:To perform a meta-analysis to evaluate the diagnostic performance of computed tomography(CT) and transthoracic echocardiography(TTE) in complex congenital heart diseases(CHD) in China.Methods:MEDLINE,Cochran...Objective:To perform a meta-analysis to evaluate the diagnostic performance of computed tomography(CT) and transthoracic echocardiography(TTE) in complex congenital heart diseases(CHD) in China.Methods:MEDLINE,Cochrane library and China National Knowledge Infrastructure(CNKI) database from January 1966 to October 2010,were searched for initial studies in China.All the studies,published in English or Chinese,used TTE,CT,or both as diagnostic tests for CHD and reported the rate of true-positive,true-negative,false-positive and false-negative diagnoses of CHD from TTE and CT findings with the surgical results as the 'gold-standard'(15 studies,XX patients) were collected.The statistic software package,'Meta-Disc 1.4',was used to conduct data analysis.A covariate analysis was used to evaluate the influence of patient or study-related factors on sensitivity.Results:Pooled sensitivity for diagnosis of CHD were 95% [95% confidence interval(CI):94%~96%] for CT studies and 87%(95% CI:85%~88%) for TTE studies.The difference between the pooled sensitivity of CT and that of TTE was statistically significant(P<0.001).TTE had higher sensitivity [0.96(95% CI:0.94~0.97)] for cardiac malformation but lower sensitivity [0.78(95% CI:0.76~0.81)] for extracardiac malformation than CT.Conclusion:CT can provide added diagnostic information compared with TTE in patients with CHD in China,especially for patients suspected of extracardiac malformation.展开更多
Stem cell factor (SCF) is a novel growth factor thatinfluences the growth and development of hematopoieticcells, germ cells and melanocytes. To explore
A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm...A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platform for detecting surface defects consisting of the bed-jig, image-forming system with CCD cameras and light sources, parallel computer system and cable system has been constructed. The detection results of the backfin defects show that the improved Sobel algorithm can achieve an accurate and efficient positioning with decreasing interference noises to the defect edge. It can also extract more precise features and characteristic parameters of the backfin defect. Furthermore, the BP neural network adopted for defects classification with the inputting characteristic parameters of improved Sobel algorithm can obtain the optimal training precision of 0.0095827 with 106 iterative steps and time of 3 s less than Sobel algorithm with 146 steps and 5 s. Finally, an enhanced identification rate of 10% for the defects is also confirmed after the Sobel algorithm is improved.展开更多
OBJECTIVE Previous studies have demonstrated a close association between an altered immune system and major depressive disorders,and inhibition of neuroinflammation may represent an alternative mechanism to treat depr...OBJECTIVE Previous studies have demonstrated a close association between an altered immune system and major depressive disorders,and inhibition of neuroinflammation may represent an alternative mechanism to treat depression.Recently,the anti-inflammatory activ⁃ity of ibrutinib has been reported.However,the effect of ibrutinib on neuroinflammation-induced depression and its underlying mechanism has not been comprehensively studied.Therefore,we aimed to elucidate the potential anti-depres⁃sive role and mechanism of ibrutinib against neu⁃roinflammation-induced depression and synaptic defects.METHODS AND RESULTS Ibrutinib treatment significantly reduced lipopolysaccha⁃ride(LPS)-induced depressive-like behaviors and neuroinflammation via inhibiting NF-κB acti⁃vation,decreasing proinflammatory cytokine levels,and normalizing redox signaling and its downstream components,including Nrf2,HO-1,and SOD2,as well as glial cell activation mark⁃ers,such as Iba-1 and GFAP.Further,ibrutinib treatment inhibited LPS-activated inflammasome activation by targeting NLRP3/P38/caspase-1 signaling.Interestingly,LPS reduced the number of dendritic spines and expression of BDNF,and synaptic-related markers,including PSD95,snap25,and synaptophysin,were improved by ibrutinib treatment in the hippocampal area of the mouse brain.CONCLUSION Ibrutinib can allevi⁃ate neuroinflammation and synaptic defects,sug⁃gesting it has antidepressant potential against LPS-induced neuroinflammation and depression.展开更多
Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need ...Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need for solid dies, and given only geometry and material information about the desired part. The central component of this system is a pair of matrices of punches, and the desired discrete die surface is constructed by changing the positions of punches though the CAD and control system. The basic MPF process is introduced and the typical application examples show the applicability of the MPF technology. Wrinkle and dimple are the major forming defects in MPF process, numerical simulation is a feasible way to predict forming defects in MPF. In conventional stamping, the mode to form sheet metal with blankholder is an effective way to suppress wrinkling; the same is true in MPF. A MPF press with flexible blankholder was developed, and the forming results indicated the forming stability of this technique. Based on the flexibility of MPF, varying deformation path MPF and sectional MPF were explored that cannot be realized in conventional stamping. By controlling each punch in real-time, a sheet part can be manufactured along a specific forming path. When the path of deformation in MPF is designed properly, forming defects will be avoided completely and lager deformation is achieved. A work piece can be formed section by section though the sectional MPF, and this technique makes it possible to manufacture large size parts in a small MPF press. Some critical experiments were performed that confirmed the validity of two special MPF techniques.展开更多
In order to solve the problems of TEV(transient earth voltage) utilization,such as single judgment criterion and low reliability of PD detection in HV switchboard,this paper discussed the method on how to make a bette...In order to solve the problems of TEV(transient earth voltage) utilization,such as single judgment criterion and low reliability of PD detection in HV switchboard,this paper discussed the method on how to make a better utilization of TEV in PD detection of metal-enclosed switchgears.Through discussing the relationship among the temporal phase,number of pulses and threshold of measuring and extracting the features corresponding to different typical defects,test results showed that the needle discharge distributed in 0°~90°and 200°~340°with low appearance probability above high measurement threshold;internal discharge distributed in 0°~90°and 270°~315°,and showed a similar decreasing trend under increasing of the threshold in the two regions;suspended discharge distributed in 0°~135°and 180°~315°where the PD in negative half periods decreased more seriously than those in positive half with increasing threshold.These results followed the doctrine of consistency with the conclusions that were obtained by using the traditional pulse current method.The possibility of using TEV method to make identification of PD defects has been proved to prepare for further research.展开更多
The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pel...The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.展开更多
文摘The classical EPQ model has been used for a long ti me and is widely accepted and implemented. Nevertheless, the analysis for finding an economic lot size has based on a number of unrealistic assumptions. A common unrealistic assumption in using EPQ is that all units produced are of good quali ty. The classical EPQ model shows that the optimal lot size will generate minimum ma nufacturing cost, thus producing minimum setup cost and inventory cost. However, this is only true if all products manufactured in the process are assumed to be of good quality (i.e. all products are within the specification limits). In rea lity this is not the case, therefore, it is necessary to consider the cost of im perfect quality items, because this cost can influence the economic lot size. Ma ny studies and recent papers have indicated that there is a significant relation ship between economic production lot size and process/product quality. However, their models included either the imperfect quality items (not necessarily de fective) which are to be sold at a discounted price or defective items which can be reworked or rejected. The aim of this paper is to provide a framework to integrate three different sit uations (discounted pricing/rework/reject) into a single model. 100% inspection is performed in order to distinguish the amount of good quality items, imper fect quality items and defective items in each lot. In this paper, a mathematica l model is developed, and a numerical example is presented to illustrate the sol ution procedures. It is found that the economic production lot size tends to inc rease as the average percentage of imperfect quality items and defectives (rejec ted items) increases.
文摘Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.
文摘Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.
文摘Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significance for the high-quality illumination of phosphor-converted WLEDs.Here,a novel red-emitting phosphor K_(2)Zn(PO_(3))_(4)∶Mn^(2+)is synthesized by standard high temperature solid state reaction in ambient atmosphere,which is a new member of self-reduction system.An effective synthesis strategy is proposed to optimize its photoluminescent performances.Combined with X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy,oxygen vacancy defects introduced by Mn doping are proved to play an important role in the transition of Mn^(4+)→Mn^(2+).Thermoluminescence analysis reveals that the distribution of trap levels,especially the deep ones,is effectively regulated by the controllable crystallization and significantly affect the thermal stability of phosphors.Then a defect-assisted model is proposed to address the inner mechanism of the phenomenon.The carriers trapped by deep trap levels can be released under the high-temperature stimulus,which return back to the luminescent centers and participate in the radiative recombination to improve thermal stability.This study provides a new crystallographic idea and theoretical support for obtaining luminescent materials with high thermal stability.
基金National Natural Science Foundation of China(U2241242)National Key R&D Program of China(2023YFB3812000,2021YFA0716502)。
文摘The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy becomes defect dipole,which prevents the domain rotation.In this field,a serious problem is that generally,Qm decreases as the temperature(T)increases,since the oxygen vacancies are decoupled from the defect dipoles.In this work,Q_(m) of Pb_(0.95)Sr_(0.05)(Zr_(0.53)Ti_(0.47))O_(3)(PSZT)ceramics doped by 0.40%Fe_(2)O_(3)(in mole)abnormally increases as T increases,of which the Qm and piezoelectric coefficient(d_(33))at room temperature and Curie temperature(TC)are 507,292 pC/N,and 345℃,respectively.The maximum Qm of 824 was achieved in the range of 120–160℃,which is 62.52%higher than that at room temperature,while the dynamic piezoelectric constant(d_(31))was just slightly decreased by 3.85%.X-ray diffraction(XRD)and piezoresponse force microscopy results show that the interplanar spacing and the fine domains form as temperature increases,and the thermally stimulated depolarization current shows that the defect dipoles are stable even the temperature up to 240℃.It can be deduced that the aggregation of oxygen vacancies near the fine domains and defect dipole can be stable up to 240℃,which pins domain rotation,resulting in the enhanced Q_(m) with the increasing temperature.These results give a potential path to design high Q_(m) at high temperature.
基金Supported by National Key Research and Development Program of China(2021YFB3601403)National Natural Science Foundation of China(62105181)Taishan Scholar of Shandong Province(tsqn202306014)。
文摘Lutetium oxide(Lu_(2)O_(3))is recognized as a potential laser crystal material,and it is noted for its high ther⁃mal conductivity,low phonon energy,and strong crystal field.Nevertheless,its high melting point of 2450℃induces significant temperature gradients,resulting in a proliferation of defects.The scarcity of comprehensive research on this crystal’s defects hinders the enhancement of crystal quality.In this study,we employed the chemical etching method to examine the etching effects on Lu_(2)O_(3)crystals under various conditions and to identify the optimal conditions for investi⁃gating the dislocation defects of Lu_(2)O_(3)crystals(mass fraction 70%H3PO4,160℃,15-18 min).The morphologies of dislocation etch pits on the(111)-and(110)-oriented Lu_(2)O_(3)wafers were characterized using microscopy,scanning electron microscopy and atomic force microscopy.This research addresses the gap in understanding Lu_(2)O_(3)line defects and offers guidance for optimizing the crystal growth process and improving crystal quality.
基金supported by Guangdong Natural Science Foundation(2019A1515011622)Guangdong Provincial Laboratory of Southern Marine Science and Engineering (Zhuhai)(SML2021SP407)。
文摘Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz.
文摘Objective:To perform a meta-analysis to evaluate the diagnostic performance of computed tomography(CT) and transthoracic echocardiography(TTE) in complex congenital heart diseases(CHD) in China.Methods:MEDLINE,Cochrane library and China National Knowledge Infrastructure(CNKI) database from January 1966 to October 2010,were searched for initial studies in China.All the studies,published in English or Chinese,used TTE,CT,or both as diagnostic tests for CHD and reported the rate of true-positive,true-negative,false-positive and false-negative diagnoses of CHD from TTE and CT findings with the surgical results as the 'gold-standard'(15 studies,XX patients) were collected.The statistic software package,'Meta-Disc 1.4',was used to conduct data analysis.A covariate analysis was used to evaluate the influence of patient or study-related factors on sensitivity.Results:Pooled sensitivity for diagnosis of CHD were 95% [95% confidence interval(CI):94%~96%] for CT studies and 87%(95% CI:85%~88%) for TTE studies.The difference between the pooled sensitivity of CT and that of TTE was statistically significant(P<0.001).TTE had higher sensitivity [0.96(95% CI:0.94~0.97)] for cardiac malformation but lower sensitivity [0.78(95% CI:0.76~0.81)] for extracardiac malformation than CT.Conclusion:CT can provide added diagnostic information compared with TTE in patients with CHD in China,especially for patients suspected of extracardiac malformation.
文摘Stem cell factor (SCF) is a novel growth factor thatinfluences the growth and development of hematopoieticcells, germ cells and melanocytes. To explore
基金Project(51174151)supported by the National Natural Science Foundation of ChinaProject(2010Z19003)supported by the Major Scientific Research Program of Hubei Provincial Department of Education,ChinaProject(2010CDB03403)supported by the Natural Science Foundation of Science and Technology Department of Hubei Province,China
文摘A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platform for detecting surface defects consisting of the bed-jig, image-forming system with CCD cameras and light sources, parallel computer system and cable system has been constructed. The detection results of the backfin defects show that the improved Sobel algorithm can achieve an accurate and efficient positioning with decreasing interference noises to the defect edge. It can also extract more precise features and characteristic parameters of the backfin defect. Furthermore, the BP neural network adopted for defects classification with the inputting characteristic parameters of improved Sobel algorithm can obtain the optimal training precision of 0.0095827 with 106 iterative steps and time of 3 s less than Sobel algorithm with 146 steps and 5 s. Finally, an enhanced identification rate of 10% for the defects is also confirmed after the Sobel algorithm is improved.
文摘OBJECTIVE Previous studies have demonstrated a close association between an altered immune system and major depressive disorders,and inhibition of neuroinflammation may represent an alternative mechanism to treat depression.Recently,the anti-inflammatory activ⁃ity of ibrutinib has been reported.However,the effect of ibrutinib on neuroinflammation-induced depression and its underlying mechanism has not been comprehensively studied.Therefore,we aimed to elucidate the potential anti-depres⁃sive role and mechanism of ibrutinib against neu⁃roinflammation-induced depression and synaptic defects.METHODS AND RESULTS Ibrutinib treatment significantly reduced lipopolysaccha⁃ride(LPS)-induced depressive-like behaviors and neuroinflammation via inhibiting NF-κB acti⁃vation,decreasing proinflammatory cytokine levels,and normalizing redox signaling and its downstream components,including Nrf2,HO-1,and SOD2,as well as glial cell activation mark⁃ers,such as Iba-1 and GFAP.Further,ibrutinib treatment inhibited LPS-activated inflammasome activation by targeting NLRP3/P38/caspase-1 signaling.Interestingly,LPS reduced the number of dendritic spines and expression of BDNF,and synaptic-related markers,including PSD95,snap25,and synaptophysin,were improved by ibrutinib treatment in the hippocampal area of the mouse brain.CONCLUSION Ibrutinib can allevi⁃ate neuroinflammation and synaptic defects,sug⁃gesting it has antidepressant potential against LPS-induced neuroinflammation and depression.
文摘Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need for solid dies, and given only geometry and material information about the desired part. The central component of this system is a pair of matrices of punches, and the desired discrete die surface is constructed by changing the positions of punches though the CAD and control system. The basic MPF process is introduced and the typical application examples show the applicability of the MPF technology. Wrinkle and dimple are the major forming defects in MPF process, numerical simulation is a feasible way to predict forming defects in MPF. In conventional stamping, the mode to form sheet metal with blankholder is an effective way to suppress wrinkling; the same is true in MPF. A MPF press with flexible blankholder was developed, and the forming results indicated the forming stability of this technique. Based on the flexibility of MPF, varying deformation path MPF and sectional MPF were explored that cannot be realized in conventional stamping. By controlling each punch in real-time, a sheet part can be manufactured along a specific forming path. When the path of deformation in MPF is designed properly, forming defects will be avoided completely and lager deformation is achieved. A work piece can be formed section by section though the sectional MPF, and this technique makes it possible to manufacture large size parts in a small MPF press. Some critical experiments were performed that confirmed the validity of two special MPF techniques.
基金Supported by National Natural Science Foundation of China(50907051)
文摘In order to solve the problems of TEV(transient earth voltage) utilization,such as single judgment criterion and low reliability of PD detection in HV switchboard,this paper discussed the method on how to make a better utilization of TEV in PD detection of metal-enclosed switchgears.Through discussing the relationship among the temporal phase,number of pulses and threshold of measuring and extracting the features corresponding to different typical defects,test results showed that the needle discharge distributed in 0°~90°and 200°~340°with low appearance probability above high measurement threshold;internal discharge distributed in 0°~90°and 270°~315°,and showed a similar decreasing trend under increasing of the threshold in the two regions;suspended discharge distributed in 0°~135°and 180°~315°where the PD in negative half periods decreased more seriously than those in positive half with increasing threshold.These results followed the doctrine of consistency with the conclusions that were obtained by using the traditional pulse current method.The possibility of using TEV method to make identification of PD defects has been proved to prepare for further research.
基金Project(50725416) supported by the National Natural Science Funds for Distinguished Young Scholars of China
文摘The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.