期刊文献+
共找到5,038篇文章
< 1 2 250 >
每页显示 20 50 100
Power forecasting method of ultra-short-term wind power cluster based on the convergence cross mapping algorithm
1
作者 Yuzhe Yang Weiye Song +5 位作者 Shuang Han Jie Yan Han Wang Qiangsheng Dai Xuesong Huo Yongqian Liu 《Global Energy Interconnection》 2025年第1期28-42,共15页
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward... The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods. 展开更多
关键词 Ultra-short-term wind power forecasting wind power cluster Causality analysis Convergence cross mapping algorithm
在线阅读 下载PDF
Research on entropy weight variation evaluation method for wind power clusters based on dynamic layered sorting
2
作者 Yansong Gao Lifu A +4 位作者 Chenxu Zhao Xiaodong Qin Ri Na An Wang Shangshang Wei 《Global Energy Interconnection》 EI CSCD 2024年第5期653-666,共14页
This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators... This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters. 展开更多
关键词 wind power clusters Entropy-weighting method Comprehensive evaluation Dynamic layered sorting
在线阅读 下载PDF
Primary frequency control considering communication delay for grid-connected offshore wind power systems
3
作者 Xueping Pan Qijie Xu +5 位作者 Tao Xu Jinpeng Guo Xiaorong Sun Yuquan Chen Qiang Li Wei Liang 《Global Energy Interconnection》 EI CSCD 2024年第3期241-253,共13页
Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque... Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy. 展开更多
关键词 Offshore wind power Primary frequency control Time delay Padéapproximation Time-delay compensation control
在线阅读 下载PDF
A method for cleaning wind power anomaly data by combining image processing with community detection algorithms
4
作者 Qiaoling Yang Kai Chen +2 位作者 Jianzhang Man Jiaheng Duan Zuoqi Jin 《Global Energy Interconnection》 EI CSCD 2024年第3期293-312,共20页
Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of ... Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of wind farm data.Consequently,a method for cleaning wind power anomaly data by combining image processing with community detection algorithms(CWPAD-IPCDA)is proposed.To precisely identify and initially clean anomalous data,wind power curve(WPC)images are converted into graph structures,which employ the Louvain community recognition algorithm and graph-theoretic methods for community detection and segmentation.Furthermore,the mathematical morphology operation(MMO)determines the main part of the initially cleaned wind power curve images and maps them back to the normal wind power points to complete the final cleaning.The CWPAD-IPCDA method was applied to clean datasets from 25 wind turbines(WTs)in two wind farms in northwest China to validate its feasibility.A comparison was conducted using density-based spatial clustering of applications with noise(DBSCAN)algorithm,an improved isolation forest algorithm,and an image-based(IB)algorithm.The experimental results demonstrate that the CWPAD-IPCDA method surpasses the other three algorithms,achieving an approximately 7.23%higher average data cleaning rate.The mean value of the sum of the squared errors(SSE)of the dataset after cleaning is approximately 6.887 lower than that of the other algorithms.Moreover,the mean of overall accuracy,as measured by the F1-score,exceeds that of the other methods by approximately 10.49%;this indicates that the CWPAD-IPCDA method is more conducive to improving the accuracy and reliability of wind power curve modeling and wind farm power forecasting. 展开更多
关键词 wind turbine power curve Abnormal data cleaning Community detection Louvain algorithm Mathematical morphology operation
在线阅读 下载PDF
Research on typical operating conditions of hydrogen production system with off-grid wind power considering the characteristics of proton exchange membrane electrolysis cell
5
作者 Weiming Peng Yanhui Xu +4 位作者 Gendi Li Jie Song Guizhi Xu Xiaona Xu Yan Pan 《Global Energy Interconnection》 EI CSCD 2024年第5期642-652,共11页
Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation a... Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation and development.In this paper,the off-grid wind power hydrogen production system is considered as the research object,and the operating characteristics of a proton exchange membrane(PEM)electrolysis cell,including underload,overload,variable load,and start-stop are analyzed.On this basis,the characteristic extraction of wind power output data after noise reduction is carried out,and then the self-organizing mapping neural network algorithm is used for clustering to extract typical wind power output scenarios and perform weight distribution based on the statistical probability.The trend and fluctuation components are superimposed to generate the typical operating conditions of an off-grid PEM electrolytic hydrogen production system.The historical output data of an actual wind farm are used for the case study,and the results confirm the feasibility of the method proposed in this study for obtaining the typical conditions of off-grid wind power hydrogen production.The results provide a basis for studying the dynamic operation characteristics of PEM electrolytic hydrogen production systems,and the performance degradation mechanism of PEM electrolysis cells under fluctuating inputs. 展开更多
关键词 wind power fluctuation Off-grid operation Hydrogen production by PEM electrolysis Neural network clustering Typical working conditions
在线阅读 下载PDF
Generation of input spectrum for electrolysis stack degradation test applied to wind power PEM hydrogen production
6
作者 Yanhui Xu Guanlin Li +1 位作者 Yuyuan Gui Zhengmao Li 《Global Energy Interconnection》 EI CSCD 2024年第4期462-474,共13页
Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current... Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy. 展开更多
关键词 Hydrogen production by electrolysis of water wind power Proton exchange membrane electrolyzer Gaussian mixture model Cyclic operating condition
在线阅读 下载PDF
Probabilistic small signal stability analysis of power system with wind power and photovoltaic power based on probability collocation method 被引量:10
7
作者 Cai Yan Linli Zhou +2 位作者 Wei Yao Jinyu Wen Shijie Cheng 《Global Energy Interconnection》 2019年第1期19-28,共10页
Recently, with increasing improvements in the penetration of wind power and photovoltaic power in the world, probabilistic small signal stability analysis(PSSSA) of a power system consisting of multiple types of renew... Recently, with increasing improvements in the penetration of wind power and photovoltaic power in the world, probabilistic small signal stability analysis(PSSSA) of a power system consisting of multiple types of renewable energy has become a key problem. To address this problem, this study proposes a probabilistic collocation method(PCM)-based PSSSA for a power system consisting of wind farms and photovoltaic farms. Compared with the conventional Monte Carlo method, the proposed method meets the accuracy and precision requirements and greatly reduces the computation; therefore, it is suitable for the PSSSA of this power system. Case studies are conducted based on a 4-machine 2-area and New England systems, respectively. The simulation results show that, by reducing synchronous generator output to improve the penetration of renewable energy, the probabilistic small signal stability(PSSS) of the system is enhanced. Conversely, by removing part of the synchronous generators to improve the penetration of renewable energy, the PSSS of the system may be either enhanced or deteriorated. 展开更多
关键词 RENEWABLE energy PROBABILISTIC small signal stability PROBABILISTIC COLLOCATION method wind power Photovoltaic power
在线阅读 下载PDF
Quantitative method for evaluating detailed volatility of wind power at multiple temporal-spatial scales 被引量:6
8
作者 Yongqian Liu Han Wang +3 位作者 Shuang Han Jie Yan Li Li Zixin Chen 《Global Energy Interconnection》 2019年第4期318-327,共10页
With the increasing proportion of wind power integration, the volatility of wind power brings huge challenges to the safe and stable operation of the electric power system. At present, the indexes commonly used to eva... With the increasing proportion of wind power integration, the volatility of wind power brings huge challenges to the safe and stable operation of the electric power system. At present, the indexes commonly used to evaluate the volatility of wind power only consider its overall characteristics, such as the standard deviation of wind power, the average of power variables, etc., while ignoring the detailed volatility of wind power, that is, the features of the frequency distribution of power variables. However, how to accurately describe the detailed volatility of wind power is the key foundation to reduce its adverse influences. To address this, a quantitative method for evaluating the detailed volatility of wind power at multiple temporal-spatial scales is proposed. First, the volatility indexes which can evaluate the detailed fluctuation characteristics of wind power are presented, including the upper confidence limit, lower confidence limit and confidence interval of power variables under the certain confidence level. Then, the actual wind power data from a location in northern China is used to illustrate the application of the proposed indexes at multiple temporal(year–season–month–day) and spatial scales(wind turbine–wind turbines–wind farm–wind farms) using the calculation time windows of 10 min, 30 min, 1 h, and 4 h. Finally, the relationships between wind power forecasting accuracy and its corresponding detailed volatility are analyzed to further verify the effectiveness of the proposed indexes. The results show that the proposed volatility indexes can effectively characterize the detailed fluctuations of wind power at multiple temporal-spatial scales. It is anticipated that the results of this study will serve as an important reference for the reserve capacity planning and optimization dispatch in the electric power system which with a high proportion of renewable energy. 展开更多
关键词 wind power Detailed VOLATILITY Frequency distribution MULTIPLE temporal-spatial scales TYPICAL DAYS Forecasting accuracy
在线阅读 下载PDF
Wind power operation capacity credit assessment considering energy storage 被引量:8
9
作者 Wenhui Shi Jixian Qu Weisheng Wang 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期1-8,共8页
Research on wind power capacity credit at the operational level plays an important role in power system dispatching.With the popularity of energy storage devices,it is increasingly necessary to study the impact of ene... Research on wind power capacity credit at the operational level plays an important role in power system dispatching.With the popularity of energy storage devices,it is increasingly necessary to study the impact of energy storage devices on wind power operational capacity credit.The definition of wind power operational capacity credit is given.The available capacity model of different generators and the charging and discharging model of the energy storage are established.Based on the above model,the evaluation method of wind power operation credible capacity considering energy storage devices is proposed.The influence of energy storage on the wind power operation credible capacity is obtained by case study,which is of great help for the power system dispatching operation and wind power accommodation. 展开更多
关键词 wind power Operation capacity credit Energy storage Operation reliability
在线阅读 下载PDF
Extreme scenario extraction of a grid with large scale wind power integration by combined entropy-weighted clustering method 被引量:12
10
作者 Kui Luo Wenhui Shi Weisheng Wang 《Global Energy Interconnection》 2020年第2期140-148,共9页
Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system ... Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system planning,some key operation modes and most critical scenarios are typically analyzed to identify the weak and high-risk points in grid operation.While these scenarios may not follow traditional empirical patterns due to the introduction of large-scale wind power.In this paper,we propose a weighted clustering method to quickly identify a system’s extreme operation scenarios by considering the temporal variations and correlations between wind power and load to evaluate the stability and security for system planning.Specifically,based on an annual time-series data of wind power and load,a combined weighted clustering method is used to pick the typical scenarios of power grid operation,and the edge operation points far from the clustering center are extracted as the extreme scenarios.The contribution of fluctuations and capacities of different wind farms and loads to extreme scenarios are considered in the clustering process,to further improve the efficiency and rationality of the extreme-scenario extraction.A set of case studies was used to verify the performance of the method,providing an intuitive understanding of the extreme scenario variety under wind power integration. 展开更多
关键词 wind power LOAD Weighted clustering Entropy weight Extreme scenario extraction
在线阅读 下载PDF
Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy 被引量:3
11
作者 Esmaeil Ghaderi Hossein Tohidi Behnam Khosrozadeh 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期391-399,共9页
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th... The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG). 展开更多
关键词 Maximum power point tracking permanent magnet synchronous generator(PMSG) sliding mode control wind turbine
在线阅读 下载PDF
Wind farm active power dispatching algorithm based on Grey Incidence 被引量:4
12
作者 Binbin Zhang Mengxin Jia +2 位作者 Chaobo Chen Kun Wang Jichao Li 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期175-183,共9页
This study proposes a wind farm active power dispatching(WFAPD) algorithm based on the grey incidence method, which does not rely on an accurate mathematical model of wind turbines. Based on the wind turbine start-sto... This study proposes a wind farm active power dispatching(WFAPD) algorithm based on the grey incidence method, which does not rely on an accurate mathematical model of wind turbines. Based on the wind turbine start-stop data at different wind speeds, the weighting coefficients, which are the participation degrees of a variable speed system and a variable pitch system in power regulation, are obtained using the grey incidence method. The incidence coefficient curve is fitted by the B-spline function at a full range of wind speeds, and the power regulation capacity of all wind turbines is obtained. Finally, the WFAPD algorithm, which is based on the regulating capacity of each wind turbine, is compared with the wind speed weighting power dispatching(WSWPD) algorithm in MATLAB. The simulation results show that the active power fluctuation of the wind farm is smaller, the rotating speed of wind turbines is smoother, and the fatigue load of highspeed turbines is effectively reduced. 展开更多
关键词 wind farm Active power dispatching Grey incidence B-spline function
在线阅读 下载PDF
Difference between grid connections of large-scale wind power and conventional synchronous generation 被引量:7
13
作者 Jie Li Chao Liu +2 位作者 Pengfei Zhang Yafeng Wang Jun Rong 《Global Energy Interconnection》 2020年第5期486-493,共8页
In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is rel... In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms. 展开更多
关键词 Large-scale wind power generation Conventional synchronous generators Grid connection scheme power control
在线阅读 下载PDF
Forecasting method of monthly wind power generation based on climate model and long short-term memory neural network 被引量:5
14
作者 Rui Yin Dengxuan Li +1 位作者 Yifeng Wang Weidong Chen 《Global Energy Interconnection》 CAS 2020年第6期571-576,共6页
Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wi... Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method. 展开更多
关键词 wind power Monthly generation forecast Climate model LSTM neural network
在线阅读 下载PDF
Battery Energy Storage to Strengthen the Wind Generator in Integrated Power System 被引量:2
15
作者 Sharad W. Mohod Mohan V. Aware 《Journal of Electronic Science and Technology》 CAS 2011年第1期23-30,共8页
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.... The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers. 展开更多
关键词 Battery energy storage power quality wind energy generating system.
在线阅读 下载PDF
Dynamic grouping control of electric vehicles based on improved k-means algorithm for wind power fluctuations suppression 被引量:2
16
作者 Yang Yu Mai Liu +2 位作者 Dongyang Chen Yuhang Huo Wentao Lu 《Global Energy Interconnection》 EI CSCD 2023年第5期542-553,共12页
To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs base... To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs based on an improved k-means algorithm.First,a swing door trending(SDT)algorithm based on compression result feedback was designed to extract the feature data points of wind power.The gating coefficient of the SDT was adjusted based on the compression ratio and deviation,enabling the acquisition of grid-connected wind power signals through linear interpolation.Second,a novel algorithm called IDOA-KM is proposed,which utilizes the Improved Dingo Optimization Algorithm(IDOA)to optimize the clustering centers of the k-means algorithm,aiming to address its dependence and sensitivity on the initial centers.The EVs were categorized into priority charging,standby,and priority discharging groups using the IDOA-KM.Finally,an two-layer power distribution scheme for EVs was devised.The upper layer determines the charging/discharging sequences of the three EV groups and their corresponding power signals.The lower layer allocates power signals to each EV based on the maximum charging/discharging power or SOC equalization principles.The simulation results demonstrate the effectiveness of the proposed control strategy in accurately tracking grid power signals,smoothing wind power fluctuations,mitigating EV degradation,and enhancing the SOC balance. 展开更多
关键词 Electric vehicles wind power fluctuation smoothing Improved k-means power allocation Swing door trending
在线阅读 下载PDF
Wind power time series simulation model based on typical daily output processes and Markov algorithm 被引量:3
17
作者 Zhihui Cong Yuecong Yu +1 位作者 Linyan Li Jie Yan 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期44-54,共11页
The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind powe... The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind power at each moment;however,they ignore the daily output characteristics and are unable to consider both modeling accuracy and efficiency.To resolve this problem,a wind power time series simulation model based on typical daily output processes and Markov algorithm is proposed.First,a typical daily output process classification method based on time series similarity and modified K-means clustering algorithm is presented.Second,considering the typical daily output processes as status variables,a wind power time series simulation model based on Markov algorithm is constructed.Finally,a case is analyzed based on the measured data of a wind farm in China.The proposed model is then compared with traditional methods to verify its effectiveness and applicability.The comparison results indicate that the statistical characteristics,probability distributions,and autocorrelation characteristics of the wind power time series generated by the proposed model are better than those of the traditional methods.Moreover,modeling efficiency considerably improves. 展开更多
关键词 wind power Time series Typical daily output processes Markov algorithm Modified K-means clustering algorithm
在线阅读 下载PDF
Two-stage ADMM-based distributed optimal reactive power control method for wind farms considering wake effects 被引量:4
18
作者 Zhenming Li Zhao Xu +2 位作者 Yawen Xie Donglian Qi Jianliang Zhang 《Global Energy Interconnection》 EI CAS CSCD 2021年第3期251-260,共10页
Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption o... Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method. 展开更多
关键词 Two-stage optimization Reactive power optimization Grid-connected wind farms Alternating direction method of multipliers(ADMM)
在线阅读 下载PDF
Big-M based MILP method for SCUC considering allowable wind power output interval and its adjustable conservativeness 被引量:3
19
作者 Liudong Zhang Qibing Zhang +2 位作者 Haifeng Fan Haiwei Wu Chunlei Xu 《Global Energy Interconnection》 CAS CSCD 2021年第2期193-203,共11页
In contrast to most existing works on robust unit commitment(UC),this study proposes a novel big-M-based mixed-integer linear programming(MILP)method to solve security-constrained UC problems considering the allowable... In contrast to most existing works on robust unit commitment(UC),this study proposes a novel big-M-based mixed-integer linear programming(MILP)method to solve security-constrained UC problems considering the allowable wind power output interval and its adjustable conservativeness.The wind power accommodation capability is usually limited by spinning reserve requirements and transmission line capacity in power systems with large-scale wind power integration.Therefore,by employing the big-M method and adding auxiliary 0-1 binary variables to describe the allowable wind power output interval,a bilinear programming problem meeting the security constraints of system operation is presented.Furthermore,an adjustable confidence level was introduced into the proposed robust optimization model to decrease the level of conservatism of the robust solutions.This can establish a trade-off between economy and security.To develop an MILP problem that can be solved by commercial solvers such as CPLEX,the big-M method is utilized again to represent the bilinear formulation as a series of linear inequality constraints and approximately address the nonlinear formulation caused by the adjustable conservativeness.Simulation studies on a modified IEEE 26-generator reliability test system connected to wind farms were performed to confirm the effectiveness and advantages of the proposed method. 展开更多
关键词 Big-M method Security-constrained unit commitment Robust optimization Mixed-integer linear programming Allowable wind power output interval Adjustable conservativeness
在线阅读 下载PDF
Probability distribution of wind power volatility based on the moving average method and improved nonparametric kernel density estimation 被引量:4
20
作者 Peizhe Xin Ying Liu +2 位作者 Nan Yang Xuankun Song Yu Huang 《Global Energy Interconnection》 2020年第3期247-258,共12页
In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling met... In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling method is proposed based on the method of moving average and adaptive nonparametric kernel density estimation(NPKDE)method.Firstly,the method of moving average is used to reduce the fluctuation of the sampling wind power component,and the probability characteristics of the modeling are then determined based on the NPKDE.Secondly,the model is improved adaptively,and is then solved by using constraint-order optimization.The simulation results show that this method has a better accuracy and applicability compared with the modeling method based on traditional parameter estimation,and solves the local adaptation problem of traditional NPKDE. 展开更多
关键词 Moving average method Signal decomposition wind power fluctuation characteristics Kernel density estimation Constrained order optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部