Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution ...Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution both in the gob and abutment.Throughout numerical simulation investigations up to now,little attention has been paid to it or an AOB of 90°was used,which however,is not realistic.This paper presents a detailed numerical modelling incorporating the AOB against Zhenchengdi Coal Mine.The AOB was obtained through cross-measure boreholes.Hoek-Brown constitutive model was used to simulate the rock masses.Double-yield constitutive model,which was best fitted by Salamon's model,was used to simulate the gob.The results show that a‘‘/\shape"shear failure zone develops around the gob.The shear failure in the floor along the panel edge is due to opposite shear of rock mass on two sides of the caving line,and the number of yielded zones within the gob floor close to the gob edge is smaller.According to the research,the entry was determined to be driven under the gob edge employing splitlevel longwall panel layout(SLPL).The other numerical simulation for SLPL shows that stress around the god-side entry is much smaller than pre-mining stress,and the area of intact rock mass at the elevating section is larger than conventional layout.Numerical modelling was then validated by field observation.展开更多
We investigated the effect of supply air rate and temperature on formaldehyde emission characteristics in an environment chamber.A three-dimensional computational fluid dynamics(CFD) chamber model for simulating forma...We investigated the effect of supply air rate and temperature on formaldehyde emission characteristics in an environment chamber.A three-dimensional computational fluid dynamics(CFD) chamber model for simulating formaldehyde emission in twelve different cases was developed for obtaining formaldehyde concentration by the area-weighted average method.Laboratory experiments were conducted in an environment chamber to validate the simulation results of twelve different cases and the formaldehyde concentration was measured by continuous sampling.The results show that there was good agreement between the model prediction and the experimental values within 4.3 difference for each case.The CFD simulation results varied in the range from 0.21 mg/m3 to 0.94 mg/m3,and the measuring results in the range from 0.17 mg/m3 to 0.87 mg/m3.The variation trend of formaldehyde concentration with supply air rate and temperature variation for CFD simulation and experiment measuring was consistent.With the existence of steady formaldehyde emission sources,formaldehyde concentration generally increased with the increase of temperature,and it decreased with the increase of air supply rate.We also provided some reasonable suggestions to reduce formaldehyde concentration and to improve indoor air quality for newly decorated rooms.展开更多
With the increasing scarcity of Earth’s resources and the development of space science and technology,the exploration, development, and utilization of deep space-specific material resources(minerals, water ice, volat...With the increasing scarcity of Earth’s resources and the development of space science and technology,the exploration, development, and utilization of deep space-specific material resources(minerals, water ice, volatile compounds, etc.) are not only important to supplement the resources and reserves on Earth but also provide a material foundation for establishing extraterrestrial research bases. To achieve large depth in-situ condition-preserved coring(ICP-Coring) in the extreme lunar environment, first, lunar rock simulant was selected(SZU-1), which has a material composition, element distribution, and physical and mechanical properties that are approximately equivalent to those of lunar mare basalt. Second, the influence of the lunar-based in-situ environment on the phase, microstructure, and thermal physical properties(specific heat capacity, thermal conductivity, thermal diffusivity, and thermal expansion coefficient)of SZU-1 was explored and compared with the measured lunar rock data. It was found that in an air atmosphere, low temperature has a more pronounced effect on the relative content of olivine than other temperatures, while in a vacuum atmosphere, the relative contents of olivine and anorthite are significantly affected only at temperatures of approximately-20 and 200 ℃. When the vacuum level is less than100 Pa, the contribution of air conduction can be almost neglected, whereas it becomes dominant above this threshold. Additionally, as the testing temperature increases, the surface of SZU-1 exhibits increased microcracking, fracture opening, and unevenness, while the specific heat capacity, thermal conductivity,and thermal expansion coefficient show nonlinear increases. Conversely, the thermal diffusivity exhibits a nonlinear decreasing trend. The relationship between thermal conductivity, thermal diffusivity, and temperature can be effectively described by an exponential function(R^(2)>0.98). The research results are consistent with previous studies on real lunar rocks. These research findings are expected to be applied in the development of the test and analysis systems of ICP-Coring in a lunar environment and the exploration of the mechanism of machine-rock interaction in the in-situ drilling and coring process.展开更多
In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environ...In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.展开更多
A compact mirror-like ECR (electron cyclotron resonance) Plasma source for the ionosphere environment simulator was described for the fort time in China. The Overall sources system was composed of a 200 W 2.45 GHz mic...A compact mirror-like ECR (electron cyclotron resonance) Plasma source for the ionosphere environment simulator was described for the fort time in China. The Overall sources system was composed of a 200 W 2.45 GHz microwave source, a coastal 3A./4 TEM-mode microwave resonance applicator, column and cylindrical Nd-Fe-P magnets, a quartz bell-shaped discharge chamber, a gas inlet system and a plasma-diffusing bore. The preliminary experiment demonstrated that ambi-polar diffusion plasma stream into the simulator (-500 mm long) formed an environment with following parameters: a plasma density ne of 104 cm-3 - 106 cm-3, an electron temperature Te < 5 eV at a pressure P of 10-1 Pa-10-3 Pa, a Plasma uniformity of > 80% over the experimental target with a 160-mm-in-diameter, satisfying primarily the requirement of simulating in a severe ionosphere environment.展开更多
Stress response of a tension leg platform (TLP) in extreme environments was investigated in this paper. A location on one of the gussets was selected as the object point, where directional stresses were numerically ...Stress response of a tension leg platform (TLP) in extreme environments was investigated in this paper. A location on one of the gussets was selected as the object point, where directional stresses were numerically simulated and also experimentally verified by a strain gage. Environmental loading and the platform's structural strength were analyzed in accordance with industrial standards, utilizing linear wave theory and the finite element method (FEM). The fast Fourier transform technique was used to calculate the stress response amplitude operators (RAO) from the records of measurements. A comparison was performed between the stress RAO of the numerical simulation and that of the actual measurements. The results indicated that the stress RAO of the numerical simulation fitted well with measured data at specified wave headings with different periods.展开更多
In this paper, a class of chemostat systems with simulate seasons Environment in the following form =(1+be(t)-s)Q+x(msa+s-k) =x(msa+s-k)-Qxis discussed. It is abstained that the system has not periodic solution when b...In this paper, a class of chemostat systems with simulate seasons Environment in the following form =(1+be(t)-s)Q+x(msa+s-k) =x(msa+s-k)-Qxis discussed. It is abstained that the system has not periodic solution when b=0; if b≠0 and b1 then system has 2 π periodic solution of system. globally asymptotically stable as mQ<μ *-1 and is unstable as mQ>μ *-1 and there exists at last one minimal 2 π periodic solution (s(t),x(t)) with \{x(t)>0,\}0<s(t)<s *(t).展开更多
Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure pres...Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure preserved environment on the mechanical difference of sandstone,four tests are numerically modeled by COMSOL:conventional triaxial test,conventional pore pressure test,in-situ stress restoration and reconstruction test,and in-situ pore pressure-preserved test(not yet realized in the laboratory).The in-situ stress restoration parameter is introduced to characterize the recovery effect of in-situ stress on elastic modulus and heterogeneous distribution of sandstone at different depths.A random function and nonuniform pore pressure coefficient are employed to describe the non-uniform distribution of pore pressure in the in-situ environment.Numerical results are compared with existing experimental data to validate the models and calibrate the numerical parameters.By extracting mechanical parameters from numerical cores,the stress-strain curves of the four tests under different depths,in-situ stress and pore pressure are compared.The influence of non-uniform pore pressure coefficient and depth on the peak strength of sandstone is analyzed.The results show a strong linear relationship between the in-situ stress restoration parameter and depth,effectively characterizing the enhanced effect of stress restoration and reconstruction methods on the elastic modulus of conventional cores at different depths.The in-situ pore pressurepreserved test exhibits lower peak stress and peak strain compared to the other three tests,and sandstone subjected to non-uniform pore pressure is more prone to plastic damage and failure.Moreover,the influence of non-uniform pore pressure on peak strength gradually diminished with increasing depth.展开更多
The whole superconducting HT-7U Tokamak is a high-cost and large-scale complicated device. The assembly requirement of HT-7U device is arduous and strict. At present, there have been no guiding principle for the assem...The whole superconducting HT-7U Tokamak is a high-cost and large-scale complicated device. The assembly requirement of HT-7U device is arduous and strict. At present, there have been no guiding principle for the assembly of the device, but assembly simulation can help the engineer plan and make decision by an intuitional and visual way before its actual assembly. The problem is that which scheme is most suitable should be solved primarily. From current research situation and technology progress of assembly simulation, this paper explained and analyzed four kinds of technological schemes of assembly simulation in common use. Finally, we got the most feasible scheme that was suitable for HT-7U assembly simulation by comparing their technological issues and difficult points of simulation among the four kinds of feasible schemes.展开更多
It is known that ion channel can effectively limit the radial expansion of an artificial electron beam during its longrange propagation in the space plasma environment.Most prior studies discussed the focusing charact...It is known that ion channel can effectively limit the radial expansion of an artificial electron beam during its longrange propagation in the space plasma environment.Most prior studies discussed the focusing characteristics of the beam in the ion channel,but the establishment process and transient properties of the ion channel itself,which also plays a crucial role during the propagation of the relativistic electron beam in the plasma environment,were commonly neglected.In this study,a series of two-dimensional(2D)particle-in-cell simulations is performed and an analytical model of ion channel oscillation is constructed according to the single-particle motion.The results showed that when the beam density is higher than the density of plasma environment,ion channel can be established and always continues to oscillate periodically over the entire propagation.Multiple factors,including the beam electron density,initial beam radius,and the plasma density can affect the oscillation properties of ion channel.Axial velocity of the beam oscillates synchronously with the ion channel and this phenomenon will finally develop into a two-stream instability which can seriously affect the effective transport for relativistic electron beam.Choosing appropriate beam parameters based on various plasma environments may contribute to the improvement of the stability of ion channel.Additionally,radial expansion of the beam can be limited by ion channel and a stable long-range propagation in terrestrial atmosphere may be achieved.展开更多
This paper presents the simulation results of the wind environment around a single high-rise building and that around two tall buildings in tandem arrangement by using the lattice Boltzmann method with an aim to under...This paper presents the simulation results of the wind environment around a single high-rise building and that around two tall buildings in tandem arrangement by using the lattice Boltzmann method with an aim to understand the ventilation issues around high-rise buildings in an urban environment.We analyzed the velocity distribution around the buildings and performed numericl simulations to reveal the formation and evolution law of the complex vortex system around the high-rise buildings.Numerical simulation results manifest a periodicity phenamenon in the process of the vortex evolution.For the case of two high-rise buildings,wind velocity in the space between the two buildings is very small,which is nearly a silent regime.Wind velocity above the front building is relatively larger and the maximum wind velocity is approximately 2.5 times the incoming wind velocity.The numerical results can be used in layout planning of high-rise residential buildings to create better environment for ventilation purpose in an urban area.展开更多
The characteristics of a torpedo's acoustic homing trajectory with multiple targets were studied. The differential equations of torpedo motion were presented based on hydrodynamics. The Fourth order Runge-Kutta metho...The characteristics of a torpedo's acoustic homing trajectory with multiple targets were studied. The differential equations of torpedo motion were presented based on hydrodynamics. The Fourth order Runge-Kutta method was used to solve these equations. Derived from sonar equations and Snell' s law, a simple virtual underwater acoustic environment was established for simulating the torpedo homing process. The Newton iteration method was used to calculate homing range and ray tracing was approximated by pieccwise line, which takes into consideration distortions cause by temperature, pressure, and salinity in a given sea area. The influence of some acoustic warfare equipment disturb the torpedo homing process in certain circumstances, including decoys and jammers, was alsotaken into account in simulations. Relative target identification logic and homing control laws were presented. Equal consideration during research was given to the requirements of rcal-timeactivity as well as accuracy. Finally, a practical torpedo homing trajectory simulation program was developed and applied to certain projects.展开更多
An underwater acoustic warfare simulation system (UAWSS) with a structure of high level architecture (HLA) is studied based upon a previous research project. With the experience and lessons learned, some new concepts ...An underwater acoustic warfare simulation system (UAWSS) with a structure of high level architecture (HLA) is studied based upon a previous research project. With the experience and lessons learned, some new concepts are adopted in the implementation of UAWSS according to the essence of simulation and the objective of the system, among which are simulation synthetic environment, signal processing at other simulation nodes, decomposition of underwater sound channel, channel varying law and rules on system and parts evaluation, etc. Applications of these new ideas show that they are effective.展开更多
基金This work was supported by the National Natural Science Foundation of China,Young Scientists Fund(No.51804209)NSFC-Shanxi Joint Fund for Coal-Based Low-Carbon Technology(No.U1710258)Shanxi Applied Basic Research Programs,Science and Technology Foundation for Youths(No.201801D221363).THX.
文摘Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution both in the gob and abutment.Throughout numerical simulation investigations up to now,little attention has been paid to it or an AOB of 90°was used,which however,is not realistic.This paper presents a detailed numerical modelling incorporating the AOB against Zhenchengdi Coal Mine.The AOB was obtained through cross-measure boreholes.Hoek-Brown constitutive model was used to simulate the rock masses.Double-yield constitutive model,which was best fitted by Salamon's model,was used to simulate the gob.The results show that a‘‘/\shape"shear failure zone develops around the gob.The shear failure in the floor along the panel edge is due to opposite shear of rock mass on two sides of the caving line,and the number of yielded zones within the gob floor close to the gob edge is smaller.According to the research,the entry was determined to be driven under the gob edge employing splitlevel longwall panel layout(SLPL).The other numerical simulation for SLPL shows that stress around the god-side entry is much smaller than pre-mining stress,and the area of intact rock mass at the elevating section is larger than conventional layout.Numerical modelling was then validated by field observation.
基金Funded by National Science Foundation(No.50778415 and No.50878177)
文摘We investigated the effect of supply air rate and temperature on formaldehyde emission characteristics in an environment chamber.A three-dimensional computational fluid dynamics(CFD) chamber model for simulating formaldehyde emission in twelve different cases was developed for obtaining formaldehyde concentration by the area-weighted average method.Laboratory experiments were conducted in an environment chamber to validate the simulation results of twelve different cases and the formaldehyde concentration was measured by continuous sampling.The results show that there was good agreement between the model prediction and the experimental values within 4.3 difference for each case.The CFD simulation results varied in the range from 0.21 mg/m3 to 0.94 mg/m3,and the measuring results in the range from 0.17 mg/m3 to 0.87 mg/m3.The variation trend of formaldehyde concentration with supply air rate and temperature variation for CFD simulation and experiment measuring was consistent.With the existence of steady formaldehyde emission sources,formaldehyde concentration generally increased with the increase of temperature,and it decreased with the increase of air supply rate.We also provided some reasonable suggestions to reduce formaldehyde concentration and to improve indoor air quality for newly decorated rooms.
基金supported by the National Natural Science Foundation of China(Nos.U2013603 and 52225403)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08G315)the Shenzhen National Science Fund for Distinguished Young Scholars(No.RCJC20210706091948015).
文摘With the increasing scarcity of Earth’s resources and the development of space science and technology,the exploration, development, and utilization of deep space-specific material resources(minerals, water ice, volatile compounds, etc.) are not only important to supplement the resources and reserves on Earth but also provide a material foundation for establishing extraterrestrial research bases. To achieve large depth in-situ condition-preserved coring(ICP-Coring) in the extreme lunar environment, first, lunar rock simulant was selected(SZU-1), which has a material composition, element distribution, and physical and mechanical properties that are approximately equivalent to those of lunar mare basalt. Second, the influence of the lunar-based in-situ environment on the phase, microstructure, and thermal physical properties(specific heat capacity, thermal conductivity, thermal diffusivity, and thermal expansion coefficient)of SZU-1 was explored and compared with the measured lunar rock data. It was found that in an air atmosphere, low temperature has a more pronounced effect on the relative content of olivine than other temperatures, while in a vacuum atmosphere, the relative contents of olivine and anorthite are significantly affected only at temperatures of approximately-20 and 200 ℃. When the vacuum level is less than100 Pa, the contribution of air conduction can be almost neglected, whereas it becomes dominant above this threshold. Additionally, as the testing temperature increases, the surface of SZU-1 exhibits increased microcracking, fracture opening, and unevenness, while the specific heat capacity, thermal conductivity,and thermal expansion coefficient show nonlinear increases. Conversely, the thermal diffusivity exhibits a nonlinear decreasing trend. The relationship between thermal conductivity, thermal diffusivity, and temperature can be effectively described by an exponential function(R^(2)>0.98). The research results are consistent with previous studies on real lunar rocks. These research findings are expected to be applied in the development of the test and analysis systems of ICP-Coring in a lunar environment and the exploration of the mechanism of machine-rock interaction in the in-situ drilling and coring process.
基金supported by National Natural Science Foundation of China(NSFC)(No.62101274 and 62101275)Natural Science Foundation of Jiangsu Province(BK20210640)Open Research Fund of National Mobile Communications Research Laboratory Southeast University under Grant 2021D03。
文摘In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.
文摘A compact mirror-like ECR (electron cyclotron resonance) Plasma source for the ionosphere environment simulator was described for the fort time in China. The Overall sources system was composed of a 200 W 2.45 GHz microwave source, a coastal 3A./4 TEM-mode microwave resonance applicator, column and cylindrical Nd-Fe-P magnets, a quartz bell-shaped discharge chamber, a gas inlet system and a plasma-diffusing bore. The preliminary experiment demonstrated that ambi-polar diffusion plasma stream into the simulator (-500 mm long) formed an environment with following parameters: a plasma density ne of 104 cm-3 - 106 cm-3, an electron temperature Te < 5 eV at a pressure P of 10-1 Pa-10-3 Pa, a Plasma uniformity of > 80% over the experimental target with a 160-mm-in-diameter, satisfying primarily the requirement of simulating in a severe ionosphere environment.
基金supported by the Fund of "111 Project" (Grant No.B07019) from the State Administration of Foreign Experts Affairs and the Ministry of Education of China
文摘Stress response of a tension leg platform (TLP) in extreme environments was investigated in this paper. A location on one of the gussets was selected as the object point, where directional stresses were numerically simulated and also experimentally verified by a strain gage. Environmental loading and the platform's structural strength were analyzed in accordance with industrial standards, utilizing linear wave theory and the finite element method (FEM). The fast Fourier transform technique was used to calculate the stress response amplitude operators (RAO) from the records of measurements. A comparison was performed between the stress RAO of the numerical simulation and that of the actual measurements. The results indicated that the stress RAO of the numerical simulation fitted well with measured data at specified wave headings with different periods.
文摘In this paper, a class of chemostat systems with simulate seasons Environment in the following form =(1+be(t)-s)Q+x(msa+s-k) =x(msa+s-k)-Qxis discussed. It is abstained that the system has not periodic solution when b=0; if b≠0 and b1 then system has 2 π periodic solution of system. globally asymptotically stable as mQ<μ *-1 and is unstable as mQ>μ *-1 and there exists at last one minimal 2 π periodic solution (s(t),x(t)) with \{x(t)>0,\}0<s(t)<s *(t).
基金supported by the National Natural Science Foundation of China(Nos.51827901 and 52121003)the 111 Project(No.B14006)+1 种基金the Yueqi Outstanding Scholar Program of CUMTB(No.2017A03)the Fundamental Research Funds for the Central Universities(No.2022YJSNY13).
文摘Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure preserved environment on the mechanical difference of sandstone,four tests are numerically modeled by COMSOL:conventional triaxial test,conventional pore pressure test,in-situ stress restoration and reconstruction test,and in-situ pore pressure-preserved test(not yet realized in the laboratory).The in-situ stress restoration parameter is introduced to characterize the recovery effect of in-situ stress on elastic modulus and heterogeneous distribution of sandstone at different depths.A random function and nonuniform pore pressure coefficient are employed to describe the non-uniform distribution of pore pressure in the in-situ environment.Numerical results are compared with existing experimental data to validate the models and calibrate the numerical parameters.By extracting mechanical parameters from numerical cores,the stress-strain curves of the four tests under different depths,in-situ stress and pore pressure are compared.The influence of non-uniform pore pressure coefficient and depth on the peak strength of sandstone is analyzed.The results show a strong linear relationship between the in-situ stress restoration parameter and depth,effectively characterizing the enhanced effect of stress restoration and reconstruction methods on the elastic modulus of conventional cores at different depths.The in-situ pore pressurepreserved test exhibits lower peak stress and peak strain compared to the other three tests,and sandstone subjected to non-uniform pore pressure is more prone to plastic damage and failure.Moreover,the influence of non-uniform pore pressure on peak strength gradually diminished with increasing depth.
基金National Nature Science Foundation of China(No.60273044)Nature Science Foundation of Anhui Province(No.01042201)
文摘The whole superconducting HT-7U Tokamak is a high-cost and large-scale complicated device. The assembly requirement of HT-7U device is arduous and strict. At present, there have been no guiding principle for the assembly of the device, but assembly simulation can help the engineer plan and make decision by an intuitional and visual way before its actual assembly. The problem is that which scheme is most suitable should be solved primarily. From current research situation and technology progress of assembly simulation, this paper explained and analyzed four kinds of technological schemes of assembly simulation in common use. Finally, we got the most feasible scheme that was suitable for HT-7U assembly simulation by comparing their technological issues and difficult points of simulation among the four kinds of feasible schemes.
基金supported by the Joint Funds of the National Natural Science Foundation of China(Grant Nos.61372050 and U1730247).
文摘It is known that ion channel can effectively limit the radial expansion of an artificial electron beam during its longrange propagation in the space plasma environment.Most prior studies discussed the focusing characteristics of the beam in the ion channel,but the establishment process and transient properties of the ion channel itself,which also plays a crucial role during the propagation of the relativistic electron beam in the plasma environment,were commonly neglected.In this study,a series of two-dimensional(2D)particle-in-cell simulations is performed and an analytical model of ion channel oscillation is constructed according to the single-particle motion.The results showed that when the beam density is higher than the density of plasma environment,ion channel can be established and always continues to oscillate periodically over the entire propagation.Multiple factors,including the beam electron density,initial beam radius,and the plasma density can affect the oscillation properties of ion channel.Axial velocity of the beam oscillates synchronously with the ion channel and this phenomenon will finally develop into a two-stream instability which can seriously affect the effective transport for relativistic electron beam.Choosing appropriate beam parameters based on various plasma environments may contribute to the improvement of the stability of ion channel.Additionally,radial expansion of the beam can be limited by ion channel and a stable long-range propagation in terrestrial atmosphere may be achieved.
基金Funded by the Natural Science Foundation of Tianjin Municipality (No. 06YFJMJC05300)the Science and Technology Development Foundation for Universities of Tianjin Municipality (No. 20060823)
文摘This paper presents the simulation results of the wind environment around a single high-rise building and that around two tall buildings in tandem arrangement by using the lattice Boltzmann method with an aim to understand the ventilation issues around high-rise buildings in an urban environment.We analyzed the velocity distribution around the buildings and performed numericl simulations to reveal the formation and evolution law of the complex vortex system around the high-rise buildings.Numerical simulation results manifest a periodicity phenamenon in the process of the vortex evolution.For the case of two high-rise buildings,wind velocity in the space between the two buildings is very small,which is nearly a silent regime.Wind velocity above the front building is relatively larger and the maximum wind velocity is approximately 2.5 times the incoming wind velocity.The numerical results can be used in layout planning of high-rise residential buildings to create better environment for ventilation purpose in an urban area.
文摘The characteristics of a torpedo's acoustic homing trajectory with multiple targets were studied. The differential equations of torpedo motion were presented based on hydrodynamics. The Fourth order Runge-Kutta method was used to solve these equations. Derived from sonar equations and Snell' s law, a simple virtual underwater acoustic environment was established for simulating the torpedo homing process. The Newton iteration method was used to calculate homing range and ray tracing was approximated by pieccwise line, which takes into consideration distortions cause by temperature, pressure, and salinity in a given sea area. The influence of some acoustic warfare equipment disturb the torpedo homing process in certain circumstances, including decoys and jammers, was alsotaken into account in simulations. Relative target identification logic and homing control laws were presented. Equal consideration during research was given to the requirements of rcal-timeactivity as well as accuracy. Finally, a practical torpedo homing trajectory simulation program was developed and applied to certain projects.
文摘An underwater acoustic warfare simulation system (UAWSS) with a structure of high level architecture (HLA) is studied based upon a previous research project. With the experience and lessons learned, some new concepts are adopted in the implementation of UAWSS according to the essence of simulation and the objective of the system, among which are simulation synthetic environment, signal processing at other simulation nodes, decomposition of underwater sound channel, channel varying law and rules on system and parts evaluation, etc. Applications of these new ideas show that they are effective.