Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass rat...Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.展开更多
The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the rel...The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.展开更多
For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchma...For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchmark construction.This paper proposes an architecture for detecting detector flatness based on channel spectral dispersion.By measuring the dispersion fringes for coplanar adjustment,the final adjustment residual is improved to better than 300 nm.This result validates the feasibility of the proposed technology and provides significant technical support for the development of next-generation large-aperture sky survey equipment.展开更多
In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 ...In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 aluminum alloy are studied.The result show that ECAP induces numerous substructures and dislocations,effectively promoting the precipitation of theηʹphase exhibiting a bimodal structure during inter-pass aging.Following inter-pass aging and subsequent ECAP,the decrease in grain size(4.8μm)is together with the increase in dislocation density(1.24×10^(15) m^(−2))due to the pinning effect of the precipitated phase.Simultaneously,the dislocation motion causes the second phase particles to become even finer and more diffuse.The synergistic effects of precipitation strengthening,fine grain strengthening,and dislocation strengthening collectively enhance the high strength of aluminum alloys,with ultimate tensile strength and yield strength reaching approximately 610 and 565 MPa,respectively.Meanwhile,ductility remains largely unchanged,primarily due to coordinated grain boundary sliding and the uniform and fine dispersion of second phase particles.展开更多
Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effectiv...Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effective defense planning and interception strategies.In recent years,HGV trajectory prediction methods based on deep learning have the great potential to significantly enhance prediction accuracy and efficiency.However,it's still challenging to strike a balance between improving prediction performance and reducing computation costs of the deep learning trajectory prediction models.To solve this problem,we propose a new deep learning framework(FECA-LSMN)for efficient HGV trajectory prediction.The model first uses a Frequency Enhanced Channel Attention(FECA)module to facilitate the fusion of different HGV trajectory features,and then subsequently employs a Light Sampling-oriented Multi-Layer Perceptron Network(LSMN)based on simple MLP-based structures to extract long/shortterm HGV trajectory features for accurate trajectory prediction.Also,we employ a new data normalization method called reversible instance normalization(RevIN)to enhance the prediction accuracy and training stability of the network.Compared to other popular trajectory prediction models based on LSTM,GRU and Transformer,our FECA-LSMN model achieves leading or comparable performance in terms of RMSE,MAE and MAPE metrics while demonstrating notably faster computation time.The ablation experiments show that the incorporation of the FECA module significantly improves the prediction performance of the network.The RevIN data normalization technique outperforms traditional min-max normalization as well.展开更多
The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional ch...The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments.展开更多
According to low earth orbit(LEO) satellite systems with users of different levels, a dynamic channel reservation scheme based on priorities is proposed. Dynamic calculation of the thresholds for reserved channels i...According to low earth orbit(LEO) satellite systems with users of different levels, a dynamic channel reservation scheme based on priorities is proposed. Dynamic calculation of the thresholds for reserved channels is the key of this strategy. In order to obtain the optimal thresholds, the traffic is predicted based on the high-speed deterministic movement property of LEO satellites firstly. Then, a channel allocation model based on Markov is established. Finally, the solution of the model is obtained based on the genetic algorithm. Without user location, this strategy effectively reduces handover failures and improves channel utilization by adjusting dynamically the thresholds according to traffic conditions. The simulation results show that the system's overall quality of service can be improved by this strategy.展开更多
By exploring the deterministic characteristics of the measurement data, a new propagation model with two deterministic clusters and stochastic arriving rays within each cluster is proposed. When considering the cumula...By exploring the deterministic characteristics of the measurement data, a new propagation model with two deterministic clusters and stochastic arriving rays within each cluster is proposed. When considering the cumulative distribution function (CDF) of the three key channel statistics, the proposed model fits the measurement data better than SV/IEEE 802.15.3, a model which is known as a standard model for UWB indoor propagation channel. Therefore, with the additional knowledge of the specific environment geometry, the proposed model generating impulse responses "resemble" the measured channel impulse responses better than IEEE model. Moreover, the proposed model's parameters obtaining procedure is simplified by utilizing simple parameters of the environment.展开更多
A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler ...A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler spread scenarios is proposed.Motivated by the dissatisfactory performance of the optimal pilots(OPs) designed under static channels over multiple OFDM symbols imposed by fast fading channels,the proposed scheme first assumes that the virtual pilot tones superimposed at data locations over specific subcarriers are transmitted from all antennas,then the virtual received pilot signals at the corresponding locations can be obtained by making full use of the time and frequency domain correlations of the frequency responses of the time varying dispersive fading channels and the received signals at pilot subcarriers,finally the channel parameters are derived from the combination of the real and virtual received pilot signals over one OFDM symbol based on least square(LS) criterion.Simulation results illustrate that the proposed method is insensitive to Doppler spread and can effectively ameliorate the mean square error(MSE) floor inherent to the previous method,meanwhile its performance outmatches that of OPs at low SNR region under static channels.展开更多
A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequ...A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequency domains is given.The pilots in accordance with a novel random pilot matrix in both time and frequency domains are sent to measure the delay-Doppler sparsity channel.The relatively nonzero channel coefficients are tracked by random pilots at a sampling rate significantly below the Nyquist rate.The sparsity channels are estimated from a very limited number of channel measurements by the basis pursuit algorithm.The proposed algorithm can effectively improve the channel estimation performance when the number of pilot symbols is reduced with improvement of throughput efficiency.展开更多
To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer ro...To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer routing (JCACR), is presented. Firstly, this paper introduces a new concept called channel utilization percentage (CUP), which is for measuring the contention level of different channels in a node’s neighborhood, and deduces its optimal value for determining whether a channel is overloaded or not. Then, a metric parameter named channel selection metric (CSM) is designed, which actually reffects not only the channel status but also corresponding node’s capacity to seize it. JCACR evaluates channel assignment by CSM, performs a local optimization by assigning each node a channel with the smaller CSM value, and changes the working channel dynamically when the channel is overloaded. Therefore, the network load balancing can be achieved. In addition, simulation shows that, when compared with the protocol of weighted cumulative expected transfer time (WCETT), the new protocol can improve the network throughput and reduce the end-to-end average delay with fewer overheads.展开更多
The novel closed-form expressions for the average channel capacity of dual selection diversity is presented, as well as, the bit-error rate (BER) of several coherent and noncoherent digital modulation schemes in the...The novel closed-form expressions for the average channel capacity of dual selection diversity is presented, as well as, the bit-error rate (BER) of several coherent and noncoherent digital modulation schemes in the correlated Weibull fading channels with nonidentical statisticS. The results are expressed in terms of Meijer's Gfunction, which can be easily evaluated numerically. The simulation results are presented to validate the proposed theoretical analysis and to examine the effects of the fading severity on the concerned quantities.展开更多
A Bayesian estimation method to separate multicomponent signals with single channel observation is presented in this paper. By using the basis function projection, the component separation becomes a problem of limited...A Bayesian estimation method to separate multicomponent signals with single channel observation is presented in this paper. By using the basis function projection, the component separation becomes a problem of limited parameter estimation. Then, a Bayesian model for estimating parameters is set up. The reversible jump MCMC (Monte Carlo Markov Chain) algorithmis adopted to perform the Bayesian computation. The method can jointly estimate the parameters of each component and the component number. Simulation results demonstrate that the method has low SNR threshold and better performance.展开更多
A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain techn...A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain technique for describing the transient electromagnetic field reflected from wall, floor, ceiling, and objects. The polarization of the received waveform is determined by taking into account the radiation pattern of the transmitting and receiving antennas, as well as the polarization changes owing to every reflection. The model provides more intrinsical interpretations for UWB pulse propagation in realistic indoor environment.展开更多
文摘Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.
基金supported by the Education and Teaching Research Project of Universities in Fujian Province(FBJY20230167).
文摘The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.
文摘For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchmark construction.This paper proposes an architecture for detecting detector flatness based on channel spectral dispersion.By measuring the dispersion fringes for coplanar adjustment,the final adjustment residual is improved to better than 300 nm.This result validates the feasibility of the proposed technology and provides significant technical support for the development of next-generation large-aperture sky survey equipment.
基金Project(52275350)supported by the National Natural Science Foundation of ChinaProject(0301006)supported by the International Cooperative Scientific Research Platform of SUES,China。
文摘In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 aluminum alloy are studied.The result show that ECAP induces numerous substructures and dislocations,effectively promoting the precipitation of theηʹphase exhibiting a bimodal structure during inter-pass aging.Following inter-pass aging and subsequent ECAP,the decrease in grain size(4.8μm)is together with the increase in dislocation density(1.24×10^(15) m^(−2))due to the pinning effect of the precipitated phase.Simultaneously,the dislocation motion causes the second phase particles to become even finer and more diffuse.The synergistic effects of precipitation strengthening,fine grain strengthening,and dislocation strengthening collectively enhance the high strength of aluminum alloys,with ultimate tensile strength and yield strength reaching approximately 610 and 565 MPa,respectively.Meanwhile,ductility remains largely unchanged,primarily due to coordinated grain boundary sliding and the uniform and fine dispersion of second phase particles.
文摘Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effective defense planning and interception strategies.In recent years,HGV trajectory prediction methods based on deep learning have the great potential to significantly enhance prediction accuracy and efficiency.However,it's still challenging to strike a balance between improving prediction performance and reducing computation costs of the deep learning trajectory prediction models.To solve this problem,we propose a new deep learning framework(FECA-LSMN)for efficient HGV trajectory prediction.The model first uses a Frequency Enhanced Channel Attention(FECA)module to facilitate the fusion of different HGV trajectory features,and then subsequently employs a Light Sampling-oriented Multi-Layer Perceptron Network(LSMN)based on simple MLP-based structures to extract long/shortterm HGV trajectory features for accurate trajectory prediction.Also,we employ a new data normalization method called reversible instance normalization(RevIN)to enhance the prediction accuracy and training stability of the network.Compared to other popular trajectory prediction models based on LSTM,GRU and Transformer,our FECA-LSMN model achieves leading or comparable performance in terms of RMSE,MAE and MAPE metrics while demonstrating notably faster computation time.The ablation experiments show that the incorporation of the FECA module significantly improves the prediction performance of the network.The RevIN data normalization technique outperforms traditional min-max normalization as well.
基金supported by the National Key Scientific Instrument and Equipment Development Project(61827801).
文摘The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments.
基金supported by the National Natural Science Foundation of China(7130108161373137)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20130877BK2012833)
文摘According to low earth orbit(LEO) satellite systems with users of different levels, a dynamic channel reservation scheme based on priorities is proposed. Dynamic calculation of the thresholds for reserved channels is the key of this strategy. In order to obtain the optimal thresholds, the traffic is predicted based on the high-speed deterministic movement property of LEO satellites firstly. Then, a channel allocation model based on Markov is established. Finally, the solution of the model is obtained based on the genetic algorithm. Without user location, this strategy effectively reduces handover failures and improves channel utilization by adjusting dynamically the thresholds according to traffic conditions. The simulation results show that the system's overall quality of service can be improved by this strategy.
基金This project was supported by the key program of the National Natural Science Foundation of China (60432040).
文摘By exploring the deterministic characteristics of the measurement data, a new propagation model with two deterministic clusters and stochastic arriving rays within each cluster is proposed. When considering the cumulative distribution function (CDF) of the three key channel statistics, the proposed model fits the measurement data better than SV/IEEE 802.15.3, a model which is known as a standard model for UWB indoor propagation channel. Therefore, with the additional knowledge of the specific environment geometry, the proposed model generating impulse responses "resemble" the measured channel impulse responses better than IEEE model. Moreover, the proposed model's parameters obtaining procedure is simplified by utilizing simple parameters of the environment.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2007AA01Z288)the National Natural Science Foundation of China (60702057)+2 种基金the National Science Fund for Distinguished Young Scholars (60725105)the Program for Changjiang Scholars and Innovative Research Team in University (IRT0852)the Fundamental Research Projects,Xidian University (JY10000901030)
文摘A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler spread scenarios is proposed.Motivated by the dissatisfactory performance of the optimal pilots(OPs) designed under static channels over multiple OFDM symbols imposed by fast fading channels,the proposed scheme first assumes that the virtual pilot tones superimposed at data locations over specific subcarriers are transmitted from all antennas,then the virtual received pilot signals at the corresponding locations can be obtained by making full use of the time and frequency domain correlations of the frequency responses of the time varying dispersive fading channels and the received signals at pilot subcarriers,finally the channel parameters are derived from the combination of the real and virtual received pilot signals over one OFDM symbol based on least square(LS) criterion.Simulation results illustrate that the proposed method is insensitive to Doppler spread and can effectively ameliorate the mean square error(MSE) floor inherent to the previous method,meanwhile its performance outmatches that of OPs at low SNR region under static channels.
基金supported by the National Natural Science Foundation of China(60972056)the Innovation Foundation of Shanghai Education Committee(09ZZ89)Shanghai Leading Academic Discipline Project and STCSM(S30108and08DZ2231100)
文摘A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequency domains is given.The pilots in accordance with a novel random pilot matrix in both time and frequency domains are sent to measure the delay-Doppler sparsity channel.The relatively nonzero channel coefficients are tracked by random pilots at a sampling rate significantly below the Nyquist rate.The sparsity channels are estimated from a very limited number of channel measurements by the basis pursuit algorithm.The proposed algorithm can effectively improve the channel estimation performance when the number of pilot symbols is reduced with improvement of throughput efficiency.
基金supported by the National Natural Science Foundationof China (60873195 61070220)+3 种基金the Natural Science Foundation of Anhui Province (070412049)the Outstanding Young Teacher Foundation of Anhui Higher Education Institutions of China (2009SQRZ167)the Natural Science Foundation of Anhui Higher Education Institutions of China (KJ2009B114)the Open Project Program of Engineering Research Center of Safety Critical Industry Measure and Control Technology (SCIMCT0802)
文摘To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer routing (JCACR), is presented. Firstly, this paper introduces a new concept called channel utilization percentage (CUP), which is for measuring the contention level of different channels in a node’s neighborhood, and deduces its optimal value for determining whether a channel is overloaded or not. Then, a metric parameter named channel selection metric (CSM) is designed, which actually reffects not only the channel status but also corresponding node’s capacity to seize it. JCACR evaluates channel assignment by CSM, performs a local optimization by assigning each node a channel with the smaller CSM value, and changes the working channel dynamically when the channel is overloaded. Therefore, the network load balancing can be achieved. In addition, simulation shows that, when compared with the protocol of weighted cumulative expected transfer time (WCETT), the new protocol can improve the network throughput and reduce the end-to-end average delay with fewer overheads.
基金the National High-Tech Research and Development Program (2002AA123032)the Innovative Research Team Program of UESTC, China.
文摘The novel closed-form expressions for the average channel capacity of dual selection diversity is presented, as well as, the bit-error rate (BER) of several coherent and noncoherent digital modulation schemes in the correlated Weibull fading channels with nonidentical statisticS. The results are expressed in terms of Meijer's Gfunction, which can be easily evaluated numerically. The simulation results are presented to validate the proposed theoretical analysis and to examine the effects of the fading severity on the concerned quantities.
文摘A Bayesian estimation method to separate multicomponent signals with single channel observation is presented in this paper. By using the basis function projection, the component separation becomes a problem of limited parameter estimation. Then, a Bayesian model for estimating parameters is set up. The reversible jump MCMC (Monte Carlo Markov Chain) algorithmis adopted to perform the Bayesian computation. The method can jointly estimate the parameters of each component and the component number. Simulation results demonstrate that the method has low SNR threshold and better performance.
基金the Key Program of National Natural Science Foundation of China (60432040)ChinaPostdoctors Science Foundation (20060390792).
文摘A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain technique for describing the transient electromagnetic field reflected from wall, floor, ceiling, and objects. The polarization of the received waveform is determined by taking into account the radiation pattern of the transmitting and receiving antennas, as well as the polarization changes owing to every reflection. The model provides more intrinsical interpretations for UWB pulse propagation in realistic indoor environment.