Previous studies on the Late Permian shallow-water ostracod faunas in South China have greatly increased our knowledge on the Late Permian ostracods.But the absence of data on contemporary deep-water ostracods makes i...Previous studies on the Late Permian shallow-water ostracod faunas in South China have greatly increased our knowledge on the Late Permian ostracods.But the absence of data on contemporary deep-water ostracods makes it difficult to comprehensively understand the Late Permian ostracods during the largest extinction among the"Big Five"in the Phanerozoic. During the past years,our work has been focused展开更多
为在稀疏测点超孔隙水压力数据条件下预测饱和软土的固结行为,引入物理信息深度算子网络(physics-informed deep operator network,PI-DeepONet)方法,并利用稀疏孔隙水压力测点数据对饱和土体全域内超孔隙水压力分布进行实时预测。通过...为在稀疏测点超孔隙水压力数据条件下预测饱和软土的固结行为,引入物理信息深度算子网络(physics-informed deep operator network,PI-DeepONet)方法,并利用稀疏孔隙水压力测点数据对饱和土体全域内超孔隙水压力分布进行实时预测。通过分析常规黏土变形固结及软弱黏土大变形固结2个实例进行预测,引入相对L2误差和R2这2个评估指标,验证了PI-DeepONet算法在预测全域超孔隙水压力演化方面的性能,并与纯数据驱动的DeepONet算法的计算结果进行了对比。预测结果表明:在相同的测点数目和各测点拥有相同超孔隙水压力数据量的条件下,DeepONet算法对全域超孔隙水压力的预测绝对误差在10^(-2)~10^(-1)左右,而PI-DeepONet算法的绝对误差范围则在10^(−3)~10^(-2)左右,表现出更好的预测效果。其次,在常规黏土变形固结行为研究中,通过对超孔隙水压力数据添加3种不同噪声水平来模拟现场监测环境,观察到即使噪声水平达到5%,PI-DeepONet算法仍能在水压力数据稀疏且带噪声的条件下提供高质量的全域超孔隙水压力实时预测。最后,在软弱黏土大变形固结行为研究中,将PI-DeepONet算法运用于上下边界排水速率不同的固结问题中,发现训练好的一维模型在单一测点条件下,能对其他界面参数条件下饱和土体全域内超孔隙水压力分布规律进行准确预测,表明PIDeepONet算法能为岩土工程中相关问题提供新的解决办法。展开更多
文摘Previous studies on the Late Permian shallow-water ostracod faunas in South China have greatly increased our knowledge on the Late Permian ostracods.But the absence of data on contemporary deep-water ostracods makes it difficult to comprehensively understand the Late Permian ostracods during the largest extinction among the"Big Five"in the Phanerozoic. During the past years,our work has been focused
文摘为在稀疏测点超孔隙水压力数据条件下预测饱和软土的固结行为,引入物理信息深度算子网络(physics-informed deep operator network,PI-DeepONet)方法,并利用稀疏孔隙水压力测点数据对饱和土体全域内超孔隙水压力分布进行实时预测。通过分析常规黏土变形固结及软弱黏土大变形固结2个实例进行预测,引入相对L2误差和R2这2个评估指标,验证了PI-DeepONet算法在预测全域超孔隙水压力演化方面的性能,并与纯数据驱动的DeepONet算法的计算结果进行了对比。预测结果表明:在相同的测点数目和各测点拥有相同超孔隙水压力数据量的条件下,DeepONet算法对全域超孔隙水压力的预测绝对误差在10^(-2)~10^(-1)左右,而PI-DeepONet算法的绝对误差范围则在10^(−3)~10^(-2)左右,表现出更好的预测效果。其次,在常规黏土变形固结行为研究中,通过对超孔隙水压力数据添加3种不同噪声水平来模拟现场监测环境,观察到即使噪声水平达到5%,PI-DeepONet算法仍能在水压力数据稀疏且带噪声的条件下提供高质量的全域超孔隙水压力实时预测。最后,在软弱黏土大变形固结行为研究中,将PI-DeepONet算法运用于上下边界排水速率不同的固结问题中,发现训练好的一维模型在单一测点条件下,能对其他界面参数条件下饱和土体全域内超孔隙水压力分布规律进行准确预测,表明PIDeepONet算法能为岩土工程中相关问题提供新的解决办法。