期刊文献+
共找到3,076篇文章
< 1 2 154 >
每页显示 20 50 100
Automatic Calcified Plaques Detection in the OCT Pullbacks Using Convolutional Neural Networks 被引量:2
1
作者 Chunliu He Yifan Yin +2 位作者 Jiaqiu Wang Biao Xu Zhiyong Li 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期109-110,共2页
Background Coronary artery calcification is a well-known marker of atherosclerotic plaque burden.High-resolution intravascular optical coherence tomography(OCT)imaging has shown the potential to characterize the detai... Background Coronary artery calcification is a well-known marker of atherosclerotic plaque burden.High-resolution intravascular optical coherence tomography(OCT)imaging has shown the potential to characterize the details of coronary calcification in vivo.In routine clinical practice,it is a time-consuming and laborious task for clinicians to review the over 250 images in a single pullback.Besides,the imbalance label distribution within the entire pullbacks is another problem,which could lead to the failure of the classifier model.Given the success of deep learning methods with other imaging modalities,a thorough understanding of calcified plaque detection using Convolutional Neural Networks(CNNs)within pullbacks for future clinical decision was required.Methods All 33 IVOCT clinical pullbacks of 33 patients were taken from Affiliated Drum Tower Hospital,Nanjing University between December 2017 and December 2018.For ground-truth annotation,three trained experts determined the type of plaque that was present in a B-Scan.The experts assigned the labels'no calcified plaque','calcified plaque'for each OCT image.All experts were provided the all images for labeling.The final label was determined based on consensus between the experts,different opinions on the plaque type were resolved by asking the experts for a repetition of their evaluation.Before the implement of algorithm,all OCT images was resized to a resolution of 300×300,which matched the range used with standard architectures in the natural image domain.In the study,we randomly selected 26 pullbacks for training,the remaining data were testing.While,imbalance label distribution within entire pullbacks was great challenge for various CNNs architecture.In order to resolve the problem,we designed the following experiment.First,we fine-tuned twenty different CNNs architecture,including customize CNN architectures and pretrained CNN architectures.Considering the nature of OCT images,customize CNN architectures were designed that the layers were fewer than 25 layers.Then,three with good performance were selected and further deep fine-tuned to train three different models.The difference of CNNs was mainly in the model architecture,such as depth-based residual networks,width-based inception networks.Finally,the three CNN models were used to majority voting,the predicted labels were from the most voting.Areas under the receiver operating characteristic curve(ROC AUC)were used as the evaluation metric for the imbalance label distribution.Results The imbalance label distribution within pullbacks affected both convergence during the training phase and generalization of a CNN model.Different labels of OCT images could be classified with excellent performance by fine tuning parameters of CNN architectures.Overall,we find that our final result performed best with an accuracy of 90%of'calcified plaque'class,which the numbers were less than'no calcified plaque'class in one pullback.Conclusions The obtained results showed that the method is fast and effective to classify calcific plaques with imbalance label distribution in each pullback.The results suggest that the proposed method could be facilitating our understanding of coronary artery calcification in the process of atherosclerosis andhelping guide complex interventional strategies in coronary arteries with superficial calcification. 展开更多
关键词 CALCIFIED PLAQUE INTRAVASCULAR optical coherence tomography deep learning IMBALANCE LABEL distribution convolutional neural networks
在线阅读 下载PDF
Uplink NOMA signal transmission with convolutional neural networks approach 被引量:3
2
作者 LIN Chuan CHANG Qing LI Xianxu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期890-898,共9页
Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Succe... Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Successive interference cancellation(SIC) is proved to be an effective method to detect the NOMA signal by ordering the power of received signals and then decoding them. However, the error accumulation effect referred to as error propagation is an inevitable problem. In this paper,we propose a convolutional neural networks(CNNs) approach to restore the desired signal impaired by the multiple input multiple output(MIMO) channel. Especially in the uplink NOMA scenario,the proposed method can decode multiple users' information in a cluster instantaneously without any traditional communication signal processing steps. Simulation experiments are conducted in the Rayleigh channel and the results demonstrate that the error performance of the proposed learning system outperforms that of the classic SIC detection. Consequently, deep learning has disruptive potential to replace the conventional signal detection method. 展开更多
关键词 non-orthogonal multiple access(NOMA) deep learning(DL) convolutional neural networks(CNNs) signal detection
在线阅读 下载PDF
Deep residual systolic network for massive MIMO channel estimation by joint training strategies of mixed-SNR and mixed-scenarios
3
作者 SUN Meng JING Qingfeng ZHONG Weizhi 《Journal of Systems Engineering and Electronics》 2025年第4期903-913,共11页
The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional ch... The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments. 展开更多
关键词 massive multiple-input multiple-output(MIMO) channel estimation deep residual shrinkage network(DRSN) deep convolutional neural network(CNN).
在线阅读 下载PDF
基于CNN-Informer和DeepLIFT的电力系统频率稳定评估方法
4
作者 张异浩 韩松 荣娜 《电力自动化设备》 北大核心 2025年第7期165-171,共7页
为解决扰动发生后电力系统频率稳定评估精度低且预测时间长的问题,提出了一种电力系统频率稳定评估方法。该方法改进层次时间戳机制,有效捕捉了频率响应在不同时间尺度下的相关性;利用深度学习重要特征技术对输入特征进行筛选,简化了数... 为解决扰动发生后电力系统频率稳定评估精度低且预测时间长的问题,提出了一种电力系统频率稳定评估方法。该方法改进层次时间戳机制,有效捕捉了频率响应在不同时间尺度下的相关性;利用深度学习重要特征技术对输入特征进行筛选,简化了数据维度并提升了模型的训练效率和预测性能;结合卷积神经网络与Informer网络,基于编码器与解码器的协同训练,构建适用于多场景的频率稳定评估框架。以修改后的新英格兰10机39节点系统和WECC 29机179节点系统为算例,仿真结果表明,所提方法在时效性和准确性方面具有显著的优势,并在多种实验条件下展现出良好的鲁棒性和适应性。 展开更多
关键词 电力系统 频率稳定评估 深度学习 时序数据 层次时间戳 蒸馏机制 卷积神经网络
在线阅读 下载PDF
基于改进DeepLabV3+算法的遥感影像建筑物变化检测 被引量:11
5
作者 齐建伟 王伟峰 +1 位作者 张乐 王光彦 《测绘通报》 CSCD 北大核心 2023年第4期145-149,共5页
变化检测是遥感测绘领域的重要任务,作为执法依据,在耕地非农化等场景监测中发挥重大作用。近年来,使用人工智能相关技术进行变化检测,常见的技术方案为叠加两期影像,再使用语义分割算法求解变化区域。本文使用变化检测数据集LEVIR-CD... 变化检测是遥感测绘领域的重要任务,作为执法依据,在耕地非农化等场景监测中发挥重大作用。近年来,使用人工智能相关技术进行变化检测,常见的技术方案为叠加两期影像,再使用语义分割算法求解变化区域。本文使用变化检测数据集LEVIR-CD作为试验数据,在DeepLabV3+算法基础上,针对变化检测场景特点,对模型结构进行改进。以DeepLabV3+的孪生网络为主干,使用多层级特征交互操作,充分融合图像特征。结果表明,改进的网络结构更加适合变化检测任务场景。 展开更多
关键词 变化检测 深度学习 卷积神经网络 语义分割
在线阅读 下载PDF
基于轻量级MobileNet-SSD和MobileNetV2-DeeplabV3+的绝缘子故障识别方法 被引量:25
6
作者 汝承印 张仕海 +2 位作者 张子淼 朱冶诚 梁玉真 《高电压技术》 EI CAS CSCD 北大核心 2022年第9期3670-3679,共10页
当前的深度学习算法多存在模型参数量大、对硬件要求较高等方面的问题,难以嵌入到无人机等移动设备。为了使无人机搭载轻量级模型对架空输电线路中的绝缘子进行故障识别,提出了一种轻量级MobileNet-SSD目标检测网络与轻量级MobileNetV2-... 当前的深度学习算法多存在模型参数量大、对硬件要求较高等方面的问题,难以嵌入到无人机等移动设备。为了使无人机搭载轻量级模型对架空输电线路中的绝缘子进行故障识别,提出了一种轻量级MobileNet-SSD目标检测网络与轻量级MobileNetV2-DeeplabV3+图像分割网络相结合的绝缘子自爆故障识别、分割方法。该方法首先利用MobileNet-SSD对绝缘子进行精确分类及定位,再结合MobileNetV2-DeeplabV3+语义分割算法对绝缘子自爆图片进行分割。实例表明:该方法能够快速地识别出绝缘子,并可以对各种复杂背景下的自爆绝缘子进行准确分割,同时具备模型参数量小、效率高、鲁棒性强等特征,可在一定程度上满足无人机的嵌入式应用要求,提高基于无人机对架空输电线路的巡检精度和实时性。 展开更多
关键词 深度学习 绝缘子故障 轻量级卷积神经网络 目标检测 图像分割 无人机
在线阅读 下载PDF
改进DeeplabV3+模型的河流水体提取 被引量:3
7
作者 张晗涛 胡荣明 +1 位作者 姜友谊 胡亚轩 《遥感信息》 CSCD 北大核心 2023年第3期146-152,共7页
为了探究深度学习DeeplabV3+模型在河流水体提取的潜力,分别构建了ResNet-50、ResNet-101、ResNet-152、Xception共4种不同骨架网络的DeeplabV3+模型,开展河流水体提取研究。通过河流水体提取结果对比分析,确定了最优骨架网络模型为ResN... 为了探究深度学习DeeplabV3+模型在河流水体提取的潜力,分别构建了ResNet-50、ResNet-101、ResNet-152、Xception共4种不同骨架网络的DeeplabV3+模型,开展河流水体提取研究。通过河流水体提取结果对比分析,确定了最优骨架网络模型为ResNet-50,在此基础上提出了改进的DeeplabV3+模型,并与最邻近分类法、随机森林分类法、支持向量机分类法、原始DeeplabV3+模型法等分类方法的分类结果进行比较。结果表明:改进的DeeplabV3+网络模型能有效提取河流水体目标,增强小面积河流水体识别能力,减少河流水体漏分现象,提高河流水体提取效果。改进后的DeeplabV3+网络模型在高分辨率遥感影像河流水体提取方面具有可行性,为后续该领域的进一步研究应用提供了参考。 展开更多
关键词 深度学习 高分辨率遥感影像 河流水体提取 deeplabV3+ 卷积神经网络
在线阅读 下载PDF
DeepTriage:一种基于深度学习的软件缺陷自动分配方法 被引量:10
8
作者 宋化志 马于涛 《小型微型计算机系统》 CSCD 北大核心 2019年第1期126-132,共7页
在软件开发和维护过程中,缺陷修复工作有一项必不可少的任务,那就是缺陷分配.在大规模的软件项目中,基于文本分类的自动分配技术已被用于提高缺陷分配的效率,从而减少人工分配的等待时间和成本.考虑到缺陷报告文本内容的复杂性,本文提... 在软件开发和维护过程中,缺陷修复工作有一项必不可少的任务,那就是缺陷分配.在大规模的软件项目中,基于文本分类的自动分配技术已被用于提高缺陷分配的效率,从而减少人工分配的等待时间和成本.考虑到缺陷报告文本内容的复杂性,本文提出了一种基于深度学习的缺陷自动分配方法,在词向量化后通过卷积神经网络对缺陷报告文本进行特征提取,然后完成分类任务.在Eclipse和Mozilla两个数据集上的结果表明,与传统的支持向量机和基于递归神经网络的方法相比,文本所提方法在准确率指标上均优于上述基准方法,而且多层平行的卷积神经网络结构比单层的卷积神经网络结构在预测效果上更好. 展开更多
关键词 缺陷分配 深度学习 卷积神经网络 递归神经网络 支持向量机
在线阅读 下载PDF
CNN A-BLSTM network的双人交互行为识别 被引量:5
9
作者 赵挺 曹江涛 姬晓飞 《电子测量与仪器学报》 CSCD 北大核心 2021年第11期100-107,共8页
关节点数据结合卷积神经网络用于双人交互行为识别存在图像化过程中对交互信息表达不充分且不能有效建模时序关系问题,而结合循环神经网络中存在侧重于对时间信息的表示却忽略了双人交互空间结构信息构建的问题。为此提出一种新的卷积... 关节点数据结合卷积神经网络用于双人交互行为识别存在图像化过程中对交互信息表达不充分且不能有效建模时序关系问题,而结合循环神经网络中存在侧重于对时间信息的表示却忽略了双人交互空间结构信息构建的问题。为此提出一种新的卷积神经网络结合加入注意机制的双向长短时期记忆网络(CNN A-BLSTM)模型。首先对每个人的关节点采用基于遍历树结构进行排列,然后对视频中的每一帧数据构建交互矩阵,矩阵的中的数值为排列后双人之间所有的关节点坐标间的欧氏距离,将矩阵进行灰度图像编码后所得图像依次送入CNN中提取深层次特征得到特征序列,然后将所得序列送入A-BLSTM网络中进行时序建模,最后送入Softmax分类器得到识别结果。将新模型用于NTU RGB D数据集中的11类双人交互行为的识别,其准确率为90%,高于目前的双人交互行为识别算法,验证了该模型的有效性和良好的泛化性能。 展开更多
关键词 双人交互行为识别 深度学习 卷积神经网络 双向长短时期记忆网络 注意机制
在线阅读 下载PDF
Using deep learning to detect small targets in infrared oversampling images 被引量:15
10
作者 LIN Liangkui WANG Shaoyou TANG Zhongxing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期947-952,共6页
According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extrac... According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance. 展开更多
关键词 infrared small target detection OVERSAMPLING deep learning convolutional neural network(CNN)
在线阅读 下载PDF
Study on the prediction and inverse prediction of detonation properties based on deep learning 被引量:5
11
作者 Zi-hang Yang Ji-li Rong Zi-tong Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期18-30,共13页
The accurate and efficient prediction of explosive detonation properties has important engineering significance for weapon design.Traditional methods for predicting detonation performance include empirical formulas,eq... The accurate and efficient prediction of explosive detonation properties has important engineering significance for weapon design.Traditional methods for predicting detonation performance include empirical formulas,equations of state,and quantum chemical calculation methods.In recent years,with the development of computer performance and deep learning methods,researchers have begun to apply deep learning methods to the prediction of explosive detonation performance.The deep learning method has the advantage of simple and rapid prediction of explosive detonation properties.However,some problems remain in the study of detonation properties based on deep learning.For example,there are few studies on the prediction of mixed explosives,on the prediction of the parameters of the equation of state of explosives,and on the application of explosive properties to predict the formulation of explosives.Based on an artificial neural network model and a one-dimensional convolutional neural network model,three improved deep learning models were established in this work with the aim of solving these problems.The training data for these models,called the detonation parameters prediction model,JWL equation of state(EOS)prediction model,and inverse prediction model,was obtained through the KHT thermochemical code.After training,the model was tested for overfitting using the validation-set test.Through the model-accuracy test,the prediction accuracy of the model for real explosive formulations was tested by comparing the predicted value with the reference value.The results show that the model errors were within 10%and 3%for the prediction of detonation pressure and detonation velocity,respectively.The accuracy refers to the prediction of tested explosive formulations which consist of TNT,RDX and HMX.For the prediction of the equation of state for explosives,the correlation coefficient between the prediction and the reference curves was above 0.99.For the prediction of the inverse prediction model,the prediction error of the explosive equation was within 9%.This indicates that the models have utility in engineering. 展开更多
关键词 deep learning Detonation properties KHT thermochemical Code JWL equation of states Artificial neural network one-dimensional convolutional neural network
在线阅读 下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
12
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis deep learning Multi-scale convolution Open-circuit convolutional neural network
在线阅读 下载PDF
基于数据集优化标记DeepLabCut女性人脸轮廓提取方法
13
作者 杨帆 刘桂雄 黄坚 《激光杂志》 北大核心 2019年第10期40-44,共5页
人脸轮廓提取应用广泛,研究一种用于完成人脸轮廓提取的数据集标记方案,提出基于关键点识别深度卷积网络DeepLabCut的人脸轮廓提取方法。首先对女性平均人脸轮廓进行曲率分析,将人脸轮廓划分成3个部分,设计出分配方案并实验,获得较优分... 人脸轮廓提取应用广泛,研究一种用于完成人脸轮廓提取的数据集标记方案,提出基于关键点识别深度卷积网络DeepLabCut的人脸轮廓提取方法。首先对女性平均人脸轮廓进行曲率分析,将人脸轮廓划分成3个部分,设计出分配方案并实验,获得较优分配布点方法;进一步分析人脸轮廓提取评价指标平均IOU与标定点数关系,得到30个标记点数即可满足要求;应用优化的标记方案标记指定小样本数据集,对DeepLabCut进行迁移学习,获得得到轮廓提取方法所采用的模型;实验结果表明本文方法比Niko软件包识别效果提高5. 5%。 展开更多
关键词 人脸轮廓提取 关键点识别 深度学习 卷积神经网络 deepLabCut
在线阅读 下载PDF
A deep dense captioning framework with joint localization and contextual reasoning
14
作者 KONG Rui XIE Wei 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2801-2813,共13页
Dense captioning aims to simultaneously localize and describe regions-of-interest(RoIs)in images in natural language.Specifically,we identify three key problems:1)dense and highly overlapping RoIs,making accurate loca... Dense captioning aims to simultaneously localize and describe regions-of-interest(RoIs)in images in natural language.Specifically,we identify three key problems:1)dense and highly overlapping RoIs,making accurate localization of each target region challenging;2)some visually ambiguous target regions which are hard to recognize each of them just by appearance;3)an extremely deep image representation which is of central importance for visual recognition.To tackle these three challenges,we propose a novel end-to-end dense captioning framework consisting of a joint localization module,a contextual reasoning module and a deep convolutional neural network(CNN).We also evaluate five deep CNN structures to explore the benefits of each.Extensive experiments on visual genome(VG)dataset demonstrate the effectiveness of our approach,which compares favorably with the state-of-the-art methods. 展开更多
关键词 dense captioning joint localization contextual reasoning deep convolutional neural network
在线阅读 下载PDF
Individual Identification of Dairy Cows Based on Deep Feature Extrac-tion and Matching
15
作者 Shen Wei-zheng Sun Jia +4 位作者 Liang Chen Shi Wei Guo Jin-yan Zhang Zhe Zhang Yong-gen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第3期85-96,共12页
Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional n... Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional neural network had the disadvantages in prolonged training at the additions of new cows samples.Therefore,a cow individual identification framework was proposed based on deep feature extraction and matching,and the individual identification of dairy cows based on this framework could avoid repeated training.Firstly,the trained convolutional neural network model was used as the feature extractor;secondly,the feature extraction was used to extract features and stored the features into the template feature library to complete the enrollment;finally,the identifies of dairy cows were identified.Based on this framework,when new cows joined the herd,enrollment could be completed quickly.In order to evaluate the application performance of this method in closed-set and open-set individual identification of dairy cows,back images of 524 cows were collected,among which the back images of 150 cows were selected as the training data to train feature extractor.The data of the remaining 374 cows were used to generate the template data set and the data to be identified.The experiment results showed that in the closed-set individual identification of dairy cows,the highest identification accuracy of top-1 was 99.73%,the highest identification accuracy from top-2 to top-5 was 100%,and the identification time of a single cow was 0.601 s,this method was verified to be effective.In the open-set individual identification of dairy cows,the recall was 90.38%,and the accuracy was 89.46%.When false accept rate(FAR)=0.05,true accept rate(TAR)=84.07%,this method was verified that the application had certain research value in open-set individual identification of dairy cows,which provided a certain idea for the application of individual identification in the field of intelligent animal husbandry. 展开更多
关键词 cow individual identification convolutional neural networks deep feature extraction feature matching
在线阅读 下载PDF
Sound event localization and detection based on deep learning
16
作者 ZHAO Dada DING Kai +2 位作者 QI Xiaogang CHEN Yu FENG Hailin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期294-301,共8页
Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,... Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,sound event localization and detection(SELD)has become a very active research topic.This paper presents a deep learning-based multioverlapping sound event localization and detection algorithm in three-dimensional space.Log-Mel spectrum and generalized cross-correlation spectrum are joined together in channel dimension as input features.These features are classified and regressed in parallel after training by a neural network to obtain sound recognition and localization results respectively.The channel attention mechanism is also introduced in the network to selectively enhance the features containing essential information and suppress the useless features.Finally,a thourough comparison confirms the efficiency and effectiveness of the proposed SELD algorithm.Field experiments show that the proposed algorithm is robust to reverberation and environment and can achieve higher recognition and localization accuracy compared with the baseline method. 展开更多
关键词 sound event localization and detection(SELD) deep learning convolutional recursive neural network(CRNN) channel attention mechanism
在线阅读 下载PDF
Rapid urban flood forecasting based on cellular automata and deep learning
17
作者 BAI Bing DONG Fei +1 位作者 LI Chuanqi WANG Wei 《水利水电技术(中英文)》 北大核心 2024年第12期17-28,共12页
[Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-d... [Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-dimensional hydrodynamic models execute calculations slowly,hindering the rapid simulation and forecasting of urban floods.To overcome this limitation and accelerate the speed and improve the accuracy of urban flood simulations and forecasting,numerical simulations and deep learning were combined to develop a more effective urban flood forecasting method.[Methods]Specifically,a cellular automata model was used to simulate the urban flood process and address the need to include a large number of datasets in the deep learning process.Meanwhile,to shorten the time required for urban flood forecasting,a convolutional neural network model was used to establish the mapping relationship between rainfall and inundation depth.[Results]The results show that the relative error of forecasting the maximum inundation depth in flood-prone locations is less than 10%,and the Nash efficiency coefficient of forecasting inundation depth series in flood-prone locations is greater than 0.75.[Conclusion]The result demonstrated that the proposed method could execute highly accurate simulations and quickly produce forecasts,illustrating its superiority as an urban flood forecasting technique. 展开更多
关键词 urban flooding flood-prone location cellular automata deep learning convolutional neural network rapid forecasting
在线阅读 下载PDF
A survey of fine-grained visual categorization based on deep learning
18
作者 XIE Yuxiang GONG Quanzhi +2 位作者 LUAN Xidao YAN Jie ZHANG Jiahui 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1337-1356,共20页
Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categ... Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categories.Due to high intra-class variances and high inter-class similarity,the fine-grained visual categorization is extremely challenging.This paper first briefly introduces and analyzes the related public datasets.After that,some of the latest methods are reviewed.Based on the feature types,the feature processing methods,and the overall structure used in the model,we divide them into three types of methods:methods based on general convolutional neural network(CNN)and strong supervision of parts,methods based on single feature processing,and meth-ods based on multiple feature processing.Most methods of the first type have a relatively simple structure,which is the result of the initial research.The methods of the other two types include models that have special structures and training processes,which are helpful to obtain discriminative features.We conduct a specific analysis on several methods with high accuracy on pub-lic datasets.In addition,we support that the focus of the future research is to solve the demand of existing methods for the large amount of the data and the computing power.In terms of tech-nology,the extraction of the subtle feature information with the burgeoning vision transformer(ViT)network is also an important research direction. 展开更多
关键词 deep learning fine-grained visual categorization convolutional neural network(CNN) visual attention
在线阅读 下载PDF
基于改进一维卷积神经网络模型的蛋清粉近红外光谱真实性检测 被引量:2
19
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 金永涛 叶文杰 王巧华 马美湖 《食品科学》 北大核心 2025年第6期245-253,共9页
引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均... 引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均池化层,提高模型提取光谱特征的能力,减少噪声干扰。结果表明,改进后的EG-1D-CNN模型可判别蛋清粉样本的真伪,对于掺假蛋清粉的检测率可达到97.80%,总准确率(AAR)为98.93%,最低检测限(LLRC)在淀粉、大豆分离蛋白、三聚氰胺、尿素和甘氨酸5种单掺杂物质上分别可达到1%、5%、0.1%、1%、5%,在多掺杂中可达到0.1%~1%,平均检测时间(AATS)可达到0.004 4 s。与传统1D-CNN网络结构及其他改进算法相比,改进后的EG-1D-CNN模型在蛋清粉真实性检测上具有更高精度,检测速度快,且模型占用空间小,更适合部署在嵌入式设备中。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的理论基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 一维卷积神经网络 深度学习
在线阅读 下载PDF
基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型 被引量:1
20
作者 陈锦妮 田谷丰 +4 位作者 李云红 朱耀麟 陈鑫 门玉乐 魏小双 《光谱学与光谱分析》 北大核心 2025年第3期678-684,共7页
羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一... 羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一种非破坏性、可进行建模操作的快速测量方法。针对传统的建模方法通常无法学习出通用的近红外光谱波段特征,导致泛化能力弱,且羊绒羊毛纤维的近红外光谱波段特征相似,难以区分的问题,本文提出一种基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型。采集了羊绒羊毛样品的近红外光谱波段数据共1170个进行验证,近红外光谱波段数据范围是1300~2500 nm。利用两个并行卷积神经网络来提取近红外光谱波段的特征,采用原始近红外光谱波段数据和降维近红外光谱波段数据同时输入的方式,并利用多尺度特征提取模块进一步提取中间具有贡献力的近红外光谱波段特征,利用路径交流模块用于两路近红外光谱波段特征的信息交流,最后利用类级别融合得到羊绒羊毛纤维预测结果。在实验过程中,将采集的80%近红外光谱波段数据用于模型训练,20%近红外光谱波段数据用于模型测试。模型测试集的平均预测准确率为94.45%,与传统算法中的随机森林、SVM、1D-CNN等算法相比较分别提升了7.33%、5.22%、2.96%,并进行消融实验对所提模型的结构进一步验证。实验结果表明,本文提出的双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型可实现羊绒羊毛纤维的快速无损预测,为近红外光谱羊绒羊毛纤维预测提供了新的思路。 展开更多
关键词 羊绒羊毛 近红外光谱 深度学习 双路多尺度卷积神经网络
在线阅读 下载PDF
上一页 1 2 154 下一页 到第
使用帮助 返回顶部