期刊文献+
共找到5,812篇文章
< 1 2 250 >
每页显示 20 50 100
Automatic Calcified Plaques Detection in the OCT Pullbacks Using Convolutional Neural Networks 被引量:2
1
作者 Chunliu He Yifan Yin +2 位作者 Jiaqiu Wang Biao Xu Zhiyong Li 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期109-110,共2页
Background Coronary artery calcification is a well-known marker of atherosclerotic plaque burden.High-resolution intravascular optical coherence tomography(OCT)imaging has shown the potential to characterize the detai... Background Coronary artery calcification is a well-known marker of atherosclerotic plaque burden.High-resolution intravascular optical coherence tomography(OCT)imaging has shown the potential to characterize the details of coronary calcification in vivo.In routine clinical practice,it is a time-consuming and laborious task for clinicians to review the over 250 images in a single pullback.Besides,the imbalance label distribution within the entire pullbacks is another problem,which could lead to the failure of the classifier model.Given the success of deep learning methods with other imaging modalities,a thorough understanding of calcified plaque detection using Convolutional Neural Networks(CNNs)within pullbacks for future clinical decision was required.Methods All 33 IVOCT clinical pullbacks of 33 patients were taken from Affiliated Drum Tower Hospital,Nanjing University between December 2017 and December 2018.For ground-truth annotation,three trained experts determined the type of plaque that was present in a B-Scan.The experts assigned the labels'no calcified plaque','calcified plaque'for each OCT image.All experts were provided the all images for labeling.The final label was determined based on consensus between the experts,different opinions on the plaque type were resolved by asking the experts for a repetition of their evaluation.Before the implement of algorithm,all OCT images was resized to a resolution of 300×300,which matched the range used with standard architectures in the natural image domain.In the study,we randomly selected 26 pullbacks for training,the remaining data were testing.While,imbalance label distribution within entire pullbacks was great challenge for various CNNs architecture.In order to resolve the problem,we designed the following experiment.First,we fine-tuned twenty different CNNs architecture,including customize CNN architectures and pretrained CNN architectures.Considering the nature of OCT images,customize CNN architectures were designed that the layers were fewer than 25 layers.Then,three with good performance were selected and further deep fine-tuned to train three different models.The difference of CNNs was mainly in the model architecture,such as depth-based residual networks,width-based inception networks.Finally,the three CNN models were used to majority voting,the predicted labels were from the most voting.Areas under the receiver operating characteristic curve(ROC AUC)were used as the evaluation metric for the imbalance label distribution.Results The imbalance label distribution within pullbacks affected both convergence during the training phase and generalization of a CNN model.Different labels of OCT images could be classified with excellent performance by fine tuning parameters of CNN architectures.Overall,we find that our final result performed best with an accuracy of 90%of'calcified plaque'class,which the numbers were less than'no calcified plaque'class in one pullback.Conclusions The obtained results showed that the method is fast and effective to classify calcific plaques with imbalance label distribution in each pullback.The results suggest that the proposed method could be facilitating our understanding of coronary artery calcification in the process of atherosclerosis andhelping guide complex interventional strategies in coronary arteries with superficial calcification. 展开更多
关键词 CALCIFIED PLAQUE INTRAVASCULAR optical coherence tomography deep learning IMBALANCE LABEL distribution convolutional neural networks
在线阅读 下载PDF
Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification 被引量:4
2
作者 Ding Yao Zhang Zhi-li +4 位作者 Zhao Xiao-feng Cai Wei He Fang Cai Yao-ming Wei-Wei Cai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期164-176,共13页
With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and th... With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models. 展开更多
关键词 Graph neural network Hyperspectral image classification deep hybrid network
在线阅读 下载PDF
Uplink NOMA signal transmission with convolutional neural networks approach 被引量:3
3
作者 LIN Chuan CHANG Qing LI Xianxu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期890-898,共9页
Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Succe... Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Successive interference cancellation(SIC) is proved to be an effective method to detect the NOMA signal by ordering the power of received signals and then decoding them. However, the error accumulation effect referred to as error propagation is an inevitable problem. In this paper,we propose a convolutional neural networks(CNNs) approach to restore the desired signal impaired by the multiple input multiple output(MIMO) channel. Especially in the uplink NOMA scenario,the proposed method can decode multiple users' information in a cluster instantaneously without any traditional communication signal processing steps. Simulation experiments are conducted in the Rayleigh channel and the results demonstrate that the error performance of the proposed learning system outperforms that of the classic SIC detection. Consequently, deep learning has disruptive potential to replace the conventional signal detection method. 展开更多
关键词 non-orthogonal multiple access(NOMA) deep learning(DL) convolutional neural networks(CNNs) signal detection
在线阅读 下载PDF
Fast solution to the free return orbit's reachable domain of the manned lunar mission by deep neural network 被引量:2
4
作者 YANG Luyi LI Haiyang +1 位作者 ZHANG Jin ZHU Yuehe 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期495-508,共14页
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval... It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model. 展开更多
关键词 manned lunar mission free return orbit reachable domain(RD) deep neural network computation efficiency
在线阅读 下载PDF
Deep neural network based classification of rolling element bearings and health degradation through comprehensive vibration signal analysis 被引量:1
5
作者 KULEVOME Delanyo Kwame Bensah WANG Hong WANG Xuegang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期233-246,共14页
Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of... Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of increasing under prolonged operation and varying working conditions.Hence, the accurate fault severity categorization of bearings is vital in diagnosing faults that arise in rotating machinery.The variability and complexity of the recorded vibration signals pose a great hurdle to distinguishing unique characteristic fault features.In this paper, the efficacy and the leverage of a pre-trained convolutional neural network(CNN) is harnessed in the implementation of a robust fault classification model.In the absence of sufficient data, this method has a high-performance rate.Initially, a modified VGG16 architecture is used to extract discriminating features from new samples and serves as input to a classifier.The raw vibration data are strategically segmented and transformed into two representations which are trained separately and jointly.The proposed approach is carried out on bearing vibration data and shows high-performance results.In addition to successfully implementing a robust fault classification model, a prognostic framework is developed by constructing a health indicator(HI) under varying operating conditions for a given fault condition. 展开更多
关键词 bearing failure deep neural network fault classification health indicator prognostics and health management
在线阅读 下载PDF
基于SEGAN和Open-DNN的工业控制系统入侵威胁检测研究 被引量:2
6
作者 胡智锋 孙峙华 《控制工程》 北大核心 2025年第3期400-408,共9页
针对工业控制系统容易遭受网络入侵威胁,进而影响工业控制系统安全性的问题,提出了一种结合生成对抗网络和深度神经网络的工业控制系统入侵威胁检测算法模型。该模型首先提出了一种样本均衡生成对抗网络,将反向传播神经网络(back propag... 针对工业控制系统容易遭受网络入侵威胁,进而影响工业控制系统安全性的问题,提出了一种结合生成对抗网络和深度神经网络的工业控制系统入侵威胁检测算法模型。该模型首先提出了一种样本均衡生成对抗网络,将反向传播神经网络(back propagation neural network,BPNN)作为分类器对入侵威胁进行分类,并通过蜻蜓优化算法实现对BPNN的改进。然后,结合开集识别和深度神经网络来实现对未知攻击的检测。最后,采用KDD数据集对模型的性能进行测试。实验结果表明,已知攻击的入侵威胁检测模型的准确率能够达到98%,F1值为0.947,召回率为0.975;未知攻击检测模型的精度为0.987,F1值为0.973,证明所提出的工业控制系统入侵威胁检测算法模型具有较高的检测精度,有效保障了工业系统的安全性。 展开更多
关键词 工业控制系统 生成对抗网络 网络入侵检测 深度神经网络 蜻蜓优化算法
在线阅读 下载PDF
基于POD-DNN降阶模型的油浸式变压器绕组稳态温升快速计算方法
7
作者 赵庆贤 刘云鹏 +3 位作者 刘刚 傅榕韵 邹莹 武卫革 《中国电机工程学报》 北大核心 2025年第6期2423-2436,I0033,共15页
为解决油浸式变压器绕组稳态温升计算耗时久的问题,该文提出一种基于POD-DNN降阶模型的快速计算方法。首先,通过绕组稳态温升全阶模型构建快照矩阵,并基于本征正交分解(proper orthogonal decomposition,POD)获得物理系统的模态及模态... 为解决油浸式变压器绕组稳态温升计算耗时久的问题,该文提出一种基于POD-DNN降阶模型的快速计算方法。首先,通过绕组稳态温升全阶模型构建快照矩阵,并基于本征正交分解(proper orthogonal decomposition,POD)获得物理系统的模态及模态系数。然后,建立工况参数与模态系数间的深度神经网络(deep neural networks,DNN)代理模型,解决POD方法中非线性项求解效率低和控制方程依赖强的局限,同时设计网络正则化策略,避免小样本下模型过拟合。最后,将DNN代理模型预测的模态系数与对应的POD模态线性加权,重构绕组温度场。经验证,POD-DNN求解的绕组温升结果与Fluent仿真和试验测量高度一致,计算效率相较于全阶模型和Fluent仿真分别提升了247478倍和23056倍,该算法能够为变压器的在线监测、运行维护和绝缘设计提供技术支撑。 展开更多
关键词 本征正交分解 深度神经网络 绕组稳态温升 快速计算 降阶模型
在线阅读 下载PDF
3D laser scanning strategy based on cascaded deep neural network
8
作者 Xiao-bin Xu Ming-hui Zhao +4 位作者 Jian Yang Yi-yang Xiong Feng-lin Pang Zhi-ying Tan Min-zhou Luo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1727-1739,共13页
A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monito... A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target. 展开更多
关键词 Scanning strategy Cascaded deep neural network Improved cross entropy loss function Pitching range and speed model Integral separate speed PID
在线阅读 下载PDF
基于CNN-Informer和DeepLIFT的电力系统频率稳定评估方法
9
作者 张异浩 韩松 荣娜 《电力自动化设备》 北大核心 2025年第7期165-171,共7页
为解决扰动发生后电力系统频率稳定评估精度低且预测时间长的问题,提出了一种电力系统频率稳定评估方法。该方法改进层次时间戳机制,有效捕捉了频率响应在不同时间尺度下的相关性;利用深度学习重要特征技术对输入特征进行筛选,简化了数... 为解决扰动发生后电力系统频率稳定评估精度低且预测时间长的问题,提出了一种电力系统频率稳定评估方法。该方法改进层次时间戳机制,有效捕捉了频率响应在不同时间尺度下的相关性;利用深度学习重要特征技术对输入特征进行筛选,简化了数据维度并提升了模型的训练效率和预测性能;结合卷积神经网络与Informer网络,基于编码器与解码器的协同训练,构建适用于多场景的频率稳定评估框架。以修改后的新英格兰10机39节点系统和WECC 29机179节点系统为算例,仿真结果表明,所提方法在时效性和准确性方面具有显著的优势,并在多种实验条件下展现出良好的鲁棒性和适应性。 展开更多
关键词 电力系统 频率稳定评估 深度学习 时序数据 层次时间戳 蒸馏机制 卷积神经网络
在线阅读 下载PDF
AdaptDNN:一个自适应可伸缩的大模型分布式训练系统
10
作者 刘国栋 朱家祺 +2 位作者 高梓源 包云岗 王卅 《计算机研究与发展》 北大核心 2025年第12期3060-3076,共17页
随着深度学习模型参数量的不断增加,训练成本也在不断上升.为了减少训练成本,使用云服务厂商提供的弹性实例训练模型成为了一个可行的解决方案.弹性实例的价格仅为正常实例的30%,可以有效降低训练成本.虽然弹性实例价格低廉,但随时都有... 随着深度学习模型参数量的不断增加,训练成本也在不断上升.为了减少训练成本,使用云服务厂商提供的弹性实例训练模型成为了一个可行的解决方案.弹性实例的价格仅为正常实例的30%,可以有效降低训练成本.虽然弹性实例价格低廉,但随时都有被回收的风险,对模型训练系统的稳定性提出了新的挑战.为了解决弹性实例场景下的容错问题,现有的工作主要有2类解决方案,分别是基于存盘点的容错和基于冗余性的容错.基于存盘点的方案开销较大,而基于冗余性的方案则对模型的并行策略有一定的限制,导致训练效率并非最优.AdaptDNN是一种自适应可伸缩的大模型分布式训练系统.在弹性实例训练场景,AdaptDNN利用弹性实例宽限期完成训练进度的备份,降低容错开销;并利用“瓶颈消除”思想调整模型并行策略,最大化利用集群可用资源,提升训练效率.实验结果表明,AdaptDNN既能实现低成本容错,又能保证模型训练效率,从而可以在弹性实例场景高效完成模型训练任务,降低模型训练成本. 展开更多
关键词 深度学习 神经网络 分布式训练 弹性实例 容错
在线阅读 下载PDF
改进DDPG的端边DNN协同推理策略
11
作者 和涛 栗娟 《计算机工程与应用》 北大核心 2025年第2期304-315,共12页
当前基于端边的深度神经网络(deep neural network,DNN)协同推理策略仅关注于优化时延敏感型任务的推理时延,而未考虑能耗敏感型任务的推理能耗成本,以及DNN划分后在异构边缘服务器之间的高效卸载问题。基于此,提出一种改进深度确定性... 当前基于端边的深度神经网络(deep neural network,DNN)协同推理策略仅关注于优化时延敏感型任务的推理时延,而未考虑能耗敏感型任务的推理能耗成本,以及DNN划分后在异构边缘服务器之间的高效卸载问题。基于此,提出一种改进深度确定性策略梯度(deep deterministic policy gradients,DDPG)的端边DNN协同推理策略,综合考虑任务对时延与能耗的敏感度,进而对推理成本进行综合优化。该策略将DNN划分与计算卸载问题分离,对不同协同设备建立预测模型,去预测出协同推理DNN的最优划分点与推理综合成本;根据预测的推理综合成本建立奖励函数,使用DDPG算法制定每个DNN推理任务的卸载策略,进而进行协同推理。实验结果证明,相比其他DNN协同推理策略,该策略在复杂的DNN协同推理环境下决策更高效,推理时延平均减少了46%,推理能耗平均减少了44%,推理综合成本平均降低了46%。 展开更多
关键词 边缘智能 深度神经网络(dnn) 协同推理 深度确定性策略梯度 任务卸载 能耗优化
在线阅读 下载PDF
Deep residual systolic network for massive MIMO channel estimation by joint training strategies of mixed-SNR and mixed-scenarios
12
作者 SUN Meng JING Qingfeng ZHONG Weizhi 《Journal of Systems Engineering and Electronics》 2025年第4期903-913,共11页
The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional ch... The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments. 展开更多
关键词 massive multiple-input multiple-output(MIMO) channel estimation deep residual shrinkage network(DRSN) deep convolutional neural network(CNN).
在线阅读 下载PDF
基于DNN的声学模型自适应实验 被引量:5
13
作者 张宇 计哲 +3 位作者 万辛 张震 葛凤培 颜永红 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2015年第9期765-770,共6页
声学模型自适应算法研究目的是缓解由测试数据和训练数据不匹配而引起的识别性能下降问题.基于深度神经网络(DNN)模型框架的自适应技术中,重训练是最直接的方法,但极容易出现过拟合现象,尤其是自适应数据稀疏的情况下.文章针对领域相关... 声学模型自适应算法研究目的是缓解由测试数据和训练数据不匹配而引起的识别性能下降问题.基于深度神经网络(DNN)模型框架的自适应技术中,重训练是最直接的方法,但极容易出现过拟合现象,尤其是自适应数据稀疏的情况下.文章针对领域相关的自动语音识别任务,对典型的两种声学模型自适应算法进行了尝试,实验了基于线性变换网络的自适应方法和基于相对熵正则化准则的自适应方法,并对两种算法进行了详尽的系统性能比较.结果表明,在不同的自适应数据量下,相对熵正则化自适应方法均能表现出较好的性能. 展开更多
关键词 声学模型自适应 语音识别 深度神经网络
在线阅读 下载PDF
基于Deep Belief Nets的中文名实体关系抽取 被引量:73
14
作者 陈宇 郑德权 赵铁军 《软件学报》 EI CSCD 北大核心 2012年第10期2572-2585,共14页
关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propa... 关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propagation)网络组成的神经网络分类器.RBM网络以确保特征向量映射达到最优,最后一层BP网络分类RBM网络的输出特征向量,从而训练实体关系分类器.在ACE04语料上进行的相关测试,一方面证明了字特征比词特征更适用于中文关系抽取任务;另一方面设计了3组不同的实验,分别使用正确的实体类别信息、通过实体类型分类器得到实体类型信息和不使用实体类型信息,用以比较实体类型信息对关系抽取效果的影响.实验结果表明,DBN非常适用于基于高维空间特征的信息抽取任务,获得的效果比SVM和反向传播网络更好. 展开更多
关键词 DBN(deep BELIEF nets) 神经网络 关系抽取 深层网络 字特征
在线阅读 下载PDF
面向入侵检测系统的Deep Belief Nets模型 被引量:23
15
作者 高妮 高岭 贺毅岳 《系统工程与电子技术》 EI CSCD 北大核心 2016年第9期2201-2207,共7页
连续的网络流量会导致海量数据问题,这为入侵检测提出了新的挑战。为此,提出一种面向入侵检测系统的深度信念网络(deep belief nets oriented to the intrusion detection system,DBN-IDS)模型。首先,通过无监督的、贪婪的算法自底向上... 连续的网络流量会导致海量数据问题,这为入侵检测提出了新的挑战。为此,提出一种面向入侵检测系统的深度信念网络(deep belief nets oriented to the intrusion detection system,DBN-IDS)模型。首先,通过无监督的、贪婪的算法自底向上逐层训练每一个受限玻尔兹曼机(restricted Boltzmann machine,RBM)网络,使得大量高维、非线性的无标签数据映射为最优的低维表示;然后利用带标签数据被附加到顶层,通过反向传播(back propagation,BP)算法自顶向下有监督地对RBM网络输出的低维表示进行分类,并同时对RBM网络进行微调;最后,利用NSLKDD数据集对模型参数和性能进行了深入的分析。实验结果表明,DBN-IDS分类效果优于支持向量机(support vector machine,SVM)和神经网络(neural network,NN),适用于高维、非线性的海量入侵数据的分类处理。 展开更多
关键词 入侵检测 神经网络 深度信念网络
在线阅读 下载PDF
基于PSO-DNN的平养鸡舍冬季氨气浓度预测模型研究 被引量:7
16
作者 邹修国 宋圆圆 +3 位作者 徐泽颖 张世凯 张杰 殷正凌 《南京农业大学学报》 CAS CSCD 北大核心 2021年第1期184-193,共10页
[目的]氨气是鸡舍内影响肉鸡生长发育的主要有害气体,由于冬季鸡舍低通风量会导致氨气浓度超标,使肉鸡的免疫功能下降,导致呼吸系统疾病发生。针对鸡舍氨气预测精度不高、效率不理想等问题,提出基于粒子群算法(particle swarm optimizat... [目的]氨气是鸡舍内影响肉鸡生长发育的主要有害气体,由于冬季鸡舍低通风量会导致氨气浓度超标,使肉鸡的免疫功能下降,导致呼吸系统疾病发生。针对鸡舍氨气预测精度不高、效率不理想等问题,提出基于粒子群算法(particle swarm optimization,PSO)优化深度神经网络(deep neural network,DNN)的预测模型,实现冬季氨气浓度预警并及时调控鸡舍内氨气的浓度。[方法]选取自建平养鸡舍环境参数数据(温度、相对湿度和氨气浓度)和鸡自身情况数据(鸡龄和鸡进入鸡舍时间)建立模型,对鸡舍内未来1 h氨气浓度进行预测。PSO-DNN预测模型首先采用PSO优化DNN中的batch_size参数,以平均绝对误差(mean absolute error,MAE)作为目标函数,经过多次迭代后,得到最佳的batch_size,再以此构建DNN模型,以数据集的前70%数据作为训练集进行DNN模型训练,经过DNN的线性运算和激活运算后,采用数据集的后30%数据对模型进行验证,并对模型进行评估。[结果]将PSO-DNN模型与DNN和随机森林模型对比,PSO-DNN模型氨气预测结果的MAE为1.886 mg·m^-3,DNN和随机森林模型预测的MAE分别为4.297和2.855 mg·m^-3。[结论]PSO-DNN模型的预测精度最高,与DNN和随机森林模型预测结果相比,其MAE分别降低56.1%和33.9%,可为平养鸡舍内氨气浓度预测提供方法参考,有助于及时、准确地调控鸡舍内氨气浓度。 展开更多
关键词 平养鸡舍 氨气浓度 深度神经网络 粒子群算法 随机森林
在线阅读 下载PDF
一种基于GMM-DNN的说话人确认方法 被引量:2
17
作者 李敬阳 吴明辉 +1 位作者 王莉 王晓迪 《计算机应用与软件》 CSCD 2016年第12期131-135,共5页
针对说话人确认中话者建模问题,提出GMM-DNN的混合建模方法。该方法先通过GMM提取原始语音特征的统计特征,然后进一步通过DNN非线性映射的方式将统计特征变换到一个与说话人相关的线性可分空间。选用栈式自编码神经网络SAE(Stacked Auto... 针对说话人确认中话者建模问题,提出GMM-DNN的混合建模方法。该方法先通过GMM提取原始语音特征的统计特征,然后进一步通过DNN非线性映射的方式将统计特征变换到一个与说话人相关的线性可分空间。选用栈式自编码神经网络SAE(Stacked Auto-encoder Neutral Network)作为深度神经网络的基本模型。在注册阶段从已训练的DNN网络中抽取最后一层作为说话人模型,称为p-vector。测试阶段,通过抽取测试语音的p-vector与注册说话人p-vector进行匹配,从而作出判决;另外还详细说明了DNN隐藏层的作用。通过对NIST语料库的实验表明,采用GMM-DNN的说话人确认方法相对于传统的GMM-UBM话者建模方法具有一定的优势。 展开更多
关键词 说话人识别 深度神经网络 高斯混合模型 统计参数
在线阅读 下载PDF
基于DNN神经网络的地铁洪涝灾害评估研究 被引量:10
18
作者 李辉山 白莲 刘平 《铁道标准设计》 北大核心 2022年第12期131-136,共6页
为科学评估地铁洪涝灾害发生的可能性,增强地铁洪涝灾害的防治和应急能力,减少人员伤害和财产损失,以我国已发生的地铁洪涝灾害历史事件中提取的相关数据作为样本,通过解构地铁洪涝灾害的致灾因素,从自然因素、周边环境和防汛能力3个维... 为科学评估地铁洪涝灾害发生的可能性,增强地铁洪涝灾害的防治和应急能力,减少人员伤害和财产损失,以我国已发生的地铁洪涝灾害历史事件中提取的相关数据作为样本,通过解构地铁洪涝灾害的致灾因素,从自然因素、周边环境和防汛能力3个维度,共13个致灾因素分析地铁洪涝灾害发生的原因及相关信息,并基于DNN神经网络方法构建用于预测是否会发生地铁洪涝灾害的神经网络模型。结果表明:(1)地铁洪涝灾害预测模型在准确率和F1 Score指标评价上均表现良好,准确率为85%,F1 Score值为0.9,且测试集结果与实际是否发生地铁洪涝灾害情况基本一致;(2)防汛能力较差和不良的周边环境因素会加重地铁车站承灾环境的脆弱性,应予重点关注;(3)自然因素是构成地铁洪涝灾害的关键要素,应多加强自然因素和防汛信息调度之间的及时性。 展开更多
关键词 地铁车站 洪涝灾害 洪涝防治 神经网络 预测模型
在线阅读 下载PDF
基于DNN的汉语框架识别研究 被引量:8
19
作者 赵红燕 李茹 +1 位作者 张晟 张力文 《中文信息学报》 CSCD 北大核心 2016年第6期75-83,共9页
框架识别是语义角色标注的基本任务,它是根据目标词激起的语义场景,为其分配一个合适的语义框架。目前框架识别的研究主要是基于统计机器学习方法,把它看作多分类问题,框架识别的性能主要依赖于人工选择的特征。然而,人工选择特征的有... 框架识别是语义角色标注的基本任务,它是根据目标词激起的语义场景,为其分配一个合适的语义框架。目前框架识别的研究主要是基于统计机器学习方法,把它看作多分类问题,框架识别的性能主要依赖于人工选择的特征。然而,人工选择特征的有效性和完备性无法保证。深度神经网络自动学习特征的能力,为我们提供了新思路。该文探索了利用深度神经网络自动学习目标词上下文特征,建立了一种新的通用的框架识别模型,在汉语框架网和《人民日报》2003年3月新闻语料上分别取得了79.64%和78.58%的准确率,实验证明该模型具有较好的泛化能力。 展开更多
关键词 汉语框架 框架识别 深度神经网络 分布式表征
在线阅读 下载PDF
基于DNN处理的鲁棒性I-Vector说话人识别算法 被引量:12
20
作者 王昕 张洪冉 《计算机工程与应用》 CSCD 北大核心 2018年第22期167-172,共6页
提出了一种将基于深度神经网络(Deep Neural Network,DNN)特征映射的回归分析模型应用到身份认证矢量(identity vector,i-vector)/概率线性判别分析(Probabilistic Linear Discriminant Analysis,PLDA)说话人系统模型中的方法。DNN通过... 提出了一种将基于深度神经网络(Deep Neural Network,DNN)特征映射的回归分析模型应用到身份认证矢量(identity vector,i-vector)/概率线性判别分析(Probabilistic Linear Discriminant Analysis,PLDA)说话人系统模型中的方法。DNN通过拟合含噪语音和纯净语音i-vector之间的非线性函数关系,得到纯净语音i-vector的近似表征,达到降低噪声对系统性能影响的目的。在TIMIT数据集上的实验验证了该方法的可行性和有效性。 展开更多
关键词 说话人识别 深度神经网络 i-vector
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部