风速和风向是影响高速列车运行安全的重要因素,对高铁沿线的大风风速和风向进行有效预测有助于及时地对列车运行状况进行评估和预警。目前高铁大风领域的研究主要集中在风速的预测,尚未考虑风速风向的联合预测。基于深度循环神经网络—...风速和风向是影响高速列车运行安全的重要因素,对高铁沿线的大风风速和风向进行有效预测有助于及时地对列车运行状况进行评估和预警。目前高铁大风领域的研究主要集中在风速的预测,尚未考虑风速风向的联合预测。基于深度循环神经网络—长短记忆(LSTM)模型,提出独立预测法、分量预测法和多变量预测法等3种风速与风向联合预测方法,并利用兰新高铁大风监测实测数据对沿线多个基站的短期风速和风向进行同步联合预测。首先,通过归一化预处理原始风向和风速序列,并运用控制变量法确定最优时间步长和模型参数。其次,采用BPTT(Backpropagation Through Time)和Adam算法进行迭代训练,并结合早停法控制收敛,得到优化后的网络结构。最后,利用训练好的LSTM网络,采用3种方法对风速和风向进行联合预测。4个基站的实验结果表明,优化后的LSTM模型可以有效提取风速风向时间序列的长期依赖特征,结合联合预测方法能够实现对风速和风向的高精度同步预测;3种联合预测方法都能在较小范围内准确预测风速和风向,除5520基站外,风速预测误差在15%以内,风向预测误差在20%以内,其中多变量预测法表现出最优的整体预测精度,独立预测法次之。本研究为风速风向的联合预测提供了新的视角,对保障高铁列车运行的安全性具有参考价值。展开更多
以深度神经网络(deep neural network,DNN)为基础构建的自动驾驶软件已成为最常见的自动驾驶软件解决方案.与传统软件一样,DNN也会产生不正确输出或意想不到的行为,基于DNN的自动驾驶软件已经导致多起严重事故,严重威胁生命和财产安全....以深度神经网络(deep neural network,DNN)为基础构建的自动驾驶软件已成为最常见的自动驾驶软件解决方案.与传统软件一样,DNN也会产生不正确输出或意想不到的行为,基于DNN的自动驾驶软件已经导致多起严重事故,严重威胁生命和财产安全.如何有效测试基于DNN的自动驾驶软件已成为亟需解决的问题.由于DNN的行为难以预测和被人类理解,传统的软件测试方法难以适用.现有的自动驾驶软件测试方法通常对原始图片加入像素级的扰动或对图片整体进行修改来生成测试数据,所生成的测试数据通常与现实世界差异较大,所进行扰动的方式也难以被人类理解.为解决上述问题,提出测试数据生成方法IATG(interpretability-analysis-based test data generation),使用DNN的解释方法获取自动驾驶软件所做出决策的视觉解释,选择原始图像中对决策产生重要影响的物体,通过将其替换为语义相同的其他物体来生成测试数据,使生成的测试数据更加接近真实图像,其过程也更易于理解.转向角预测模型是自动驾驶软件决策模块重要组成部分,以此类模型为例进行实验,结果表明解释方法的引入有效增强IATG对转向角预测模型的误导能力.此外,在误导角度相同时IATG所生成测试数据比DeepTest更加接近真实图像;与semSensFuzz相比,IATG具有更高误导能力,且IATG中基于解释分析的重要物体选择技术可有效提高semSensFuzz的误导能力.展开更多
流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的...流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的弱监督概念漂移检测(Weakly supervised conceptual drift detection method based on online deep neural network,WSCDD)方法.该方法设计了一种在线深度神经网络模型,采用Hedge反向传播方法在线学习网络深度,并通过设计Dropout层在模型预测时引入随机性,利用蒙特卡罗方法量化深度神经网络模型的预测不确定性,通过自适应滑动窗口技术检测弱监督环境下概念漂移的发生,并使模型适应新的概念.实验结果表明,该方法可以准确检测数据流中概念漂移的发生,在漂移发生后能够快速收敛到新的数据分布,提高了学习模型的泛化性能.展开更多
文摘风速和风向是影响高速列车运行安全的重要因素,对高铁沿线的大风风速和风向进行有效预测有助于及时地对列车运行状况进行评估和预警。目前高铁大风领域的研究主要集中在风速的预测,尚未考虑风速风向的联合预测。基于深度循环神经网络—长短记忆(LSTM)模型,提出独立预测法、分量预测法和多变量预测法等3种风速与风向联合预测方法,并利用兰新高铁大风监测实测数据对沿线多个基站的短期风速和风向进行同步联合预测。首先,通过归一化预处理原始风向和风速序列,并运用控制变量法确定最优时间步长和模型参数。其次,采用BPTT(Backpropagation Through Time)和Adam算法进行迭代训练,并结合早停法控制收敛,得到优化后的网络结构。最后,利用训练好的LSTM网络,采用3种方法对风速和风向进行联合预测。4个基站的实验结果表明,优化后的LSTM模型可以有效提取风速风向时间序列的长期依赖特征,结合联合预测方法能够实现对风速和风向的高精度同步预测;3种联合预测方法都能在较小范围内准确预测风速和风向,除5520基站外,风速预测误差在15%以内,风向预测误差在20%以内,其中多变量预测法表现出最优的整体预测精度,独立预测法次之。本研究为风速风向的联合预测提供了新的视角,对保障高铁列车运行的安全性具有参考价值。
文摘以深度神经网络(deep neural network,DNN)为基础构建的自动驾驶软件已成为最常见的自动驾驶软件解决方案.与传统软件一样,DNN也会产生不正确输出或意想不到的行为,基于DNN的自动驾驶软件已经导致多起严重事故,严重威胁生命和财产安全.如何有效测试基于DNN的自动驾驶软件已成为亟需解决的问题.由于DNN的行为难以预测和被人类理解,传统的软件测试方法难以适用.现有的自动驾驶软件测试方法通常对原始图片加入像素级的扰动或对图片整体进行修改来生成测试数据,所生成的测试数据通常与现实世界差异较大,所进行扰动的方式也难以被人类理解.为解决上述问题,提出测试数据生成方法IATG(interpretability-analysis-based test data generation),使用DNN的解释方法获取自动驾驶软件所做出决策的视觉解释,选择原始图像中对决策产生重要影响的物体,通过将其替换为语义相同的其他物体来生成测试数据,使生成的测试数据更加接近真实图像,其过程也更易于理解.转向角预测模型是自动驾驶软件决策模块重要组成部分,以此类模型为例进行实验,结果表明解释方法的引入有效增强IATG对转向角预测模型的误导能力.此外,在误导角度相同时IATG所生成测试数据比DeepTest更加接近真实图像;与semSensFuzz相比,IATG具有更高误导能力,且IATG中基于解释分析的重要物体选择技术可有效提高semSensFuzz的误导能力.
文摘流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的弱监督概念漂移检测(Weakly supervised conceptual drift detection method based on online deep neural network,WSCDD)方法.该方法设计了一种在线深度神经网络模型,采用Hedge反向传播方法在线学习网络深度,并通过设计Dropout层在模型预测时引入随机性,利用蒙特卡罗方法量化深度神经网络模型的预测不确定性,通过自适应滑动窗口技术检测弱监督环境下概念漂移的发生,并使模型适应新的概念.实验结果表明,该方法可以准确检测数据流中概念漂移的发生,在漂移发生后能够快速收敛到新的数据分布,提高了学习模型的泛化性能.