期刊文献+
共找到99篇文章
< 1 2 5 >
每页显示 20 50 100
Deep reinforcement learning and its application in autonomous fitting optimization for attack areas of UCAVs 被引量:14
1
作者 LI Yue QIU Xiaohui +1 位作者 LIU Xiaodong XIA Qunli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期734-742,共9页
The ever-changing battlefield environment requires the use of robust and adaptive technologies integrated into a reliable platform. Unmanned combat aerial vehicles(UCAVs) aim to integrate such advanced technologies wh... The ever-changing battlefield environment requires the use of robust and adaptive technologies integrated into a reliable platform. Unmanned combat aerial vehicles(UCAVs) aim to integrate such advanced technologies while increasing the tactical capabilities of combat aircraft. As a research object, common UCAV uses the neural network fitting strategy to obtain values of attack areas. However, this simple strategy cannot cope with complex environmental changes and autonomously optimize decision-making problems. To solve the problem, this paper proposes a new deep deterministic policy gradient(DDPG) strategy based on deep reinforcement learning for the attack area fitting of UCAVs in the future battlefield. Simulation results show that the autonomy and environmental adaptability of UCAVs in the future battlefield will be improved based on the new DDPG algorithm and the training process converges quickly. We can obtain the optimal values of attack areas in real time during the whole flight with the well-trained deep network. 展开更多
关键词 attack area neural network deep deterministic policy gradient(DDPG) unmanned combat aerial vehicle(UCAV)
在线阅读 下载PDF
面向信号调制识别的对抗攻击与防御综述
2
作者 徐冬月 田蕴哲 +6 位作者 陈康 李轶珂 吴亚伦 童恩栋 牛温佳 刘吉强 史忠植 《计算机研究与发展》 北大核心 2025年第7期1713-1737,共25页
随着深度学习的飞速发展,基于深度神经网络的信号调制识别任务成为无线通信领域热门研究.研究发现,深度神经网络模型极易受到对抗性扰动的影响,使调制识别任务失效.目前面向无线通信安全性的研究工作仍存在些许瓶颈问题与理论空白,源于... 随着深度学习的飞速发展,基于深度神经网络的信号调制识别任务成为无线通信领域热门研究.研究发现,深度神经网络模型极易受到对抗性扰动的影响,使调制识别任务失效.目前面向无线通信安全性的研究工作仍存在些许瓶颈问题与理论空白,源于无线通信固有的实验环境、数据结构与信号特征等多维度特性,不能将其他领域较为成熟的攻防方法简单迁移到信号对抗攻击中.面向信号调制识别领域的对抗攻防,总结该领域对抗攻击与防御技术研究工作,提出信号调制识别领域的通用对抗攻击分类框架与威胁模型,将该领域研究工作分类为物理自我防御式攻击和数字直接访问式攻击,并以2维图形式进行系统化整合与可视化展示,详细阐述对抗攻击方法、对抗样本生成技术与理论公式、对抗检测与防御技术最新的研究工作,系统提炼无线通信对抗攻击研究的3个维度特性并归纳相应的处理方法,最后总结面向信号调制识别的攻防安全领域在未来的研究发展方向. 展开更多
关键词 深度神经网络 无线通信 信号调制识别 对抗攻击 防御
在线阅读 下载PDF
遥感图像中不确定性驱动的像素级对抗噪声检测方法
3
作者 要旭东 郭雅萍 +3 位作者 刘梦阳 孟钢 李阳 张浩鹏 《电子与信息学报》 北大核心 2025年第6期1633-1644,共12页
现有对抗防御策略大多针对特定攻击方式进行对抗样本判别,计算复杂度高、迁移性差,且无法实现噪声的像素级检测。对于大尺寸遥感图像,对抗噪声往往集中于局部关键地物区域。为此,该文结合对抗噪声高不确定性特征,面向遥感图像提出一种... 现有对抗防御策略大多针对特定攻击方式进行对抗样本判别,计算复杂度高、迁移性差,且无法实现噪声的像素级检测。对于大尺寸遥感图像,对抗噪声往往集中于局部关键地物区域。为此,该文结合对抗噪声高不确定性特征,面向遥感图像提出一种不确定性驱动的像素级对抗噪声检测方法。首先设计带蒙特卡罗批归一化的特征提取网络,通过多次前向传播生成蒙特卡罗样本,并将样本的均值和标准差分别作为输出图像和不确定性图。依据输出图像的均方误差判断其是否属于对抗样本,若属于则进一步结合不确定性图实现多种类型对抗噪声的像素级检测。在遥感数据集上的实验结果表明,该方法能够准确检测出对抗噪声,并在不同攻击方式下展现出强鲁棒性与良好的泛化性能。 展开更多
关键词 遥感图像处理 神经网络 对抗攻击与防御 对抗噪声检测 不确定性建模
在线阅读 下载PDF
基于GAN的无数据黑盒对抗攻击方法
4
作者 赵恩浩 凌捷 《计算机工程与应用》 北大核心 2025年第7期204-212,共9页
对抗样本能够使深度神经网络以高置信度输出错误的结果。在黑盒攻击中,现有的替代模型训练方法需要目标模型全部或部分训练数据才能取得较好的攻击效果,但实际应用中目标模型的训练数据难以获取。因此,提出一种基于GAN的无数据黑盒对抗... 对抗样本能够使深度神经网络以高置信度输出错误的结果。在黑盒攻击中,现有的替代模型训练方法需要目标模型全部或部分训练数据才能取得较好的攻击效果,但实际应用中目标模型的训练数据难以获取。因此,提出一种基于GAN的无数据黑盒对抗攻击方法。无需目标模型的训练数据,使用混合标签信息的噪声生成替代模型所需的训练样本,通过目标模型的标记信息以及多样化损失函数使训练样本分布均匀且包含更多特征信息,进而使替代模型高效学习目标模型的分类功能。对比DaST和MAZE,该方法在降低35%~60%的对抗扰动和查询次数的同时对CIFAR-100、CIFAR-10、SVHN、FMNIST、MNIST五个数据集的FGSM、BIM、PGD三种攻击的成功率平均提高6~10个百分点,并且在实际应用中的黑盒模型场景Microsoft Azure取得78%以上的攻击成功率。 展开更多
关键词 黑盒对抗攻击 生成对抗网络 替代训练 迁移攻击 深度神经网络
在线阅读 下载PDF
基于频率感知与义原增强的文本防御编码
5
作者 罗浩岚 刘万平 +1 位作者 王宝娟 黄东 《计算机工程与设计》 北大核心 2025年第3期749-755,共7页
针对文本防御编码未考虑训练样本中词频的影响,同义词集缺乏囊括性且存在一定噪声的问题,提出一种基于频率感知与义原增强的编码训练方法。引入样本单词频率,利用编码器区分为样本中的低频词与非低频词,分别训练其鲁棒性;替换词集采用... 针对文本防御编码未考虑训练样本中词频的影响,同义词集缺乏囊括性且存在一定噪声的问题,提出一种基于频率感知与义原增强的编码训练方法。引入样本单词频率,利用编码器区分为样本中的低频词与非低频词,分别训练其鲁棒性;替换词集采用义原增强后的样本数据,能够有效扩充现有词集;编码算法能使样本有效训练确保模型原始准确率。在常见数据集上的实验结果表明,编码训练下的模型分类准确率优于之前防御方法,分别在TextCNN与LSTM上降低模型平均误差到3.6%与4.2%。 展开更多
关键词 文本防御编码 深度神经网络 文本分类 同义词替换攻击 频率感知 义原增强 文本对抗样本
在线阅读 下载PDF
基于可解释性的不可见后门攻击研究
6
作者 郑嘉熙 陈伟 +1 位作者 尹萍 张怡婷 《信息安全研究》 北大核心 2025年第1期21-27,共7页
深度学习在各种关键任务上取得了显著的成功.然而,最近的研究表明,深度神经网络很容易受到后门攻击,攻击者释放出对良性样本行为正常的反向模型,但将任何触发器施加的样本错误地分类到目标标签上.与对抗性样本不同,后门攻击主要实施在... 深度学习在各种关键任务上取得了显著的成功.然而,最近的研究表明,深度神经网络很容易受到后门攻击,攻击者释放出对良性样本行为正常的反向模型,但将任何触发器施加的样本错误地分类到目标标签上.与对抗性样本不同,后门攻击主要实施在模型训练阶段,用触发器干扰样本,并向模型中注入后门,提出了一种基于可解释性算法的不可见后门攻击方法.与现有的任意设置触发掩膜的工作不同,精心设计了一个基于可解释性的触发掩膜确定,并采用最新型的随机像素扰动作为触发器样式设计,使触发器施加的样本更自然和难以察觉,用以规避人眼的检测,以及对后门攻击的防御策略.通过在CIFAR-10,CIFAR-100和ImageNet数据集上进行了大量的对比实验证明该攻击的有效性和优越性.还使用SSIM指数评估所设计的后门样本与良性样本之间的差异,得到了接近0.99的评估指标,证明了生成的后门样本在目视检查下是无法识别的.最后还证明了攻击的抗防御性,可以抵御现有的后门防御方法. 展开更多
关键词 深度学习 深度神经网络 后门攻击 触发器 可解释性 后门样本
在线阅读 下载PDF
基于多模态深度神经网络的无线传感网络DDoS攻击防御算法
7
作者 刘阳 李貌 冯浩 《传感技术学报》 北大核心 2025年第6期1097-1101,共5页
当无线传感网络遭受DDoS攻击时,极有可能导致网络服务中断、资源耗尽或网络性能下降等问题,严重威胁网络的安全性。为此,提出了基于多模态深度神经网络的无线传感网络DDoS攻击防御算法。将无线传感网络信号进行短时阶傅里叶变换(Short-T... 当无线传感网络遭受DDoS攻击时,极有可能导致网络服务中断、资源耗尽或网络性能下降等问题,严重威胁网络的安全性。为此,提出了基于多模态深度神经网络的无线传感网络DDoS攻击防御算法。将无线传感网络信号进行短时阶傅里叶变换(Short-Time Fourier Transform,STFT),对STFT后的信号进行奇异值分解(Singular Value Decomposition,SVD),以增强数据信号。将增强后的数据信号输入到多模态深度神经网络模型,并利用卷积层提取多模态特征,通过多模态特征的融合和学习,增强模型区分攻击数据和正常数据的能力。采用EWC算法对模型中的参数进行更新,进一步提高防御效果。仿真结果表明,所提算法的报文到达率在0.94以上,网络传输延时低于0.03 s,误警率稳定在0.6%以内,具有良好的DDoS攻击防御性能。 展开更多
关键词 无线传感网络 DDOS攻击防御 多模态深度神经网络 奇异值分解 参数更新
在线阅读 下载PDF
深度强化学习认知不确定性的扰动生成方法
8
作者 许莉 柴霁轩 +2 位作者 常雨晴 宛旭 范纯龙 《计算机工程与设计》 北大核心 2025年第5期1349-1355,共7页
针对现有的强化学习攻击算法在攻击过程中由于扰动值过大易被察觉的问题,提出一种不确定性攻击算法UCA(uncertainty attack)。由于在强化学习场景中不确定性随处可见且是影响最终奖励的重要原因,利用该特点,从模型的最终概率输出中量化... 针对现有的强化学习攻击算法在攻击过程中由于扰动值过大易被察觉的问题,提出一种不确定性攻击算法UCA(uncertainty attack)。由于在强化学习场景中不确定性随处可见且是影响最终奖励的重要原因,利用该特点,从模型的最终概率输出中量化认知不确定性梯度,结合多边缘损失函数,以更少的迭代次数生成更隐蔽且高效的对抗样本。在Atari的6款游戏场景上进行了实验,其结果表明,UCA攻击算法在每次迭代中扰动更少数量的像素,可达到相同甚至更好的扰动效果。 展开更多
关键词 对抗攻击 深度强化学习 不确定性 安全性 神经网络 对抗样本 局部攻击
在线阅读 下载PDF
工业加氢裂化过程深度学习模型的对抗样本攻击研究
9
作者 王晨 《石油学报(石油加工)》 北大核心 2025年第2期352-361,共10页
基于神经网络的深度学习技术已广泛应用于炼油化工工业软测量,其安全性日益引起重视。以用于加氢裂化过程异常监测的深度学习模型为研究对象,提出了基于梯度的TRI-FGSM白盒对抗样本攻击算法,并首次系统考察了加氢裂化深度学习模型的对... 基于神经网络的深度学习技术已广泛应用于炼油化工工业软测量,其安全性日益引起重视。以用于加氢裂化过程异常监测的深度学习模型为研究对象,提出了基于梯度的TRI-FGSM白盒对抗样本攻击算法,并首次系统考察了加氢裂化深度学习模型的对抗样本攻击效果的影响因素。结果表明:对抗攻击效果随着攻击迭代轮次而收敛至0.98,说明加氢裂化深度学习模型在面对对抗样本时易被误导、普遍存在安全性问题;对抗攻击算法中范数、扰动阈值的选择可提高攻击效率,但不能提高攻击质量,而加氢裂化回归任务中变量的输入维度和预测标签可显著影响生成的对抗样本的扰动程度,其中重石脑油收率预测案例中攻击收敛时对抗样本扰动度不足0.02,扰动最小,而2个换热器结垢预测案例相应扰动度则分别为0.04和0.12,扰动较大;在变量维度越高、异常监测初期实际标签值偏离模型理论预测值越小时,所生成的对抗样本扰动越小,隐蔽性越好且越不易被检测,攻击质量越高。通过揭露加氢裂化深度学习模型在炼油化工过程初期异常监测中的潜在脆弱性,强调安全性和可靠性,为构建炼油化工高鲁棒深度学习模型提供了有效见解。 展开更多
关键词 加氢裂化 神经网络 深度学习 对抗样本攻击 安全 异常监测 脆弱性
在线阅读 下载PDF
针对深度神经网络的高效光学对抗攻击
10
作者 戚富琪 高海昌 +1 位作者 李博凌 邹翔 《西安电子科技大学学报》 北大核心 2025年第2期1-12,共12页
随着对抗攻击算法的不断更新,深度神经网络面临的安全风险愈加严峻。由于光学现象在真实世界中出现频繁,对光学对抗攻击的抗干扰能力直观反应了深度神经网络在实际应用中的安全性。然而,目前光学对抗攻击方面的研究普遍存在光学对抗扰... 随着对抗攻击算法的不断更新,深度神经网络面临的安全风险愈加严峻。由于光学现象在真实世界中出现频繁,对光学对抗攻击的抗干扰能力直观反应了深度神经网络在实际应用中的安全性。然而,目前光学对抗攻击方面的研究普遍存在光学对抗扰动失真和优化不稳定的问题。为此,提出了一种新型光学攻击方法AdvFlare,以便于探究眩光扰动对深度神经网络安全性的影响。AdvFlare构造了一种参数化的眩光仿真模型,该模型对眩光的形状和颜色等多个属性进行建模,仿真效果好。在此基础上,提出了参数空间限制、随机初始化和分步优化的策略,解决了对抗扰动失真与收敛困难的问题。实验结果表明,与现有方法相比,AdvFlare能够以极高的成功率让深度神经网络误分类,具有稳定和扰动逼真度高的优点。此外,还发现,无论在数字域还是物理域,利用AdvFlare进行对抗训练能够显著提高深度神经网络的抗干扰能力,对提高公共交通场景下的模型鲁棒性有启发作用。 展开更多
关键词 深度神经网络 对抗攻击 眩光效应 模型鲁棒性 对抗训练
在线阅读 下载PDF
基于损失平滑的对抗样本攻击方法 被引量:1
11
作者 黎妹红 金双 杜晔 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期663-670,共8页
深度神经网络(DNNs)容易受到对抗样本的攻击,现有基于动量的对抗样本生成方法虽然可以达到接近100%的白盒攻击成功率,但是在攻击其他模型时效果仍不理想,黑盒攻击成功率较低。针对此,提出一种基于损失平滑的对抗样本攻击方法来提高对抗... 深度神经网络(DNNs)容易受到对抗样本的攻击,现有基于动量的对抗样本生成方法虽然可以达到接近100%的白盒攻击成功率,但是在攻击其他模型时效果仍不理想,黑盒攻击成功率较低。针对此,提出一种基于损失平滑的对抗样本攻击方法来提高对抗样本的可迁移性。在每一步计算梯度的迭代过程中,不直接使用当前梯度,而是使用局部平均梯度来累积动量,以此来抑制损失函数曲面存在的局部振荡现象,从而稳定更新方向,逃离局部极值点。在ImageNet数据集上的大量实验结果表明:所提方法与现有基于动量的方法相比,在单个模型攻击实验中的平均黑盒攻击成功率分别提升了38.07%和27.77%,在集成模型攻击实验中的平均黑盒攻击成功率分别提升了32.50%和28.63%。 展开更多
关键词 深度神经网络 对抗样本 黑盒攻击 损失平滑 人工智能安全
在线阅读 下载PDF
基于人工智能的物联网DDoS攻击检测 被引量:2
12
作者 印杰 陈浦 +2 位作者 杨桂年 谢文伟 梁广俊 《信息网络安全》 CSCD 北大核心 2024年第11期1615-1623,共9页
针对物联网DDoS攻击检测最优解问题,文章采用多种算法对物联网DDoS攻击进行检测和建模分类,运用核密度估计筛选出有影响的流量特征字段,建立基于机器学习和深度学习算法的DDoS攻击检测模型,分析了通过可逆残差神经网络和大语言模型处理... 针对物联网DDoS攻击检测最优解问题,文章采用多种算法对物联网DDoS攻击进行检测和建模分类,运用核密度估计筛选出有影响的流量特征字段,建立基于机器学习和深度学习算法的DDoS攻击检测模型,分析了通过可逆残差神经网络和大语言模型处理数据集并进行攻击检测的可行性。实验结果表明,ResNet50算法在综合指标上表现最好;在区分DDoS攻击流量和其他流量问题上,梯度提升类算法表现更优秀;在细分DDoS攻击类型方面,经过优化的ResNet50-GRU算法表现更好。 展开更多
关键词 物联网 DDOS攻击 机器学习 深度学习算法 残差神经网络
在线阅读 下载PDF
基于双曲正切和矩的免疫防御
13
作者 吴昊 王金伟 +1 位作者 罗向阳 马宾 《计算机学报》 EI CAS CSCD 北大核心 2024年第8期1786-1812,共27页
对抗样本的发现与研究证实了深度神经网络的脆弱性.如果不对对抗样本的生成加以约束,那么触手可及的图像将不再安全并随时可能对不鲁棒的深度神经网络构成威胁.然而,现有的对抗防御主要旨在防止对抗样本成功攻击深度神经网络,而不是防... 对抗样本的发现与研究证实了深度神经网络的脆弱性.如果不对对抗样本的生成加以约束,那么触手可及的图像将不再安全并随时可能对不鲁棒的深度神经网络构成威胁.然而,现有的对抗防御主要旨在防止对抗样本成功攻击深度神经网络,而不是防止对抗样本的生成.因此,本文提出了一种新颖的对抗防御机制,该机制被称为免疫防御.免疫防御通过主动地在原始图像上添加难以察觉的扰动使得攻击者无法针对该图像制作出有效的对抗样本,从而同时保护了图像和深度神经网络.这种良性的扰动被称为免疫扰动,添加了免疫扰动的图像被称为免疫样本.在白盒免疫防御中,本文提出了双曲正切免疫防御(Hyperbolic Tangent Immune Defense,HTID)以制作高分类准确率、高防御性能和高视觉质量的白盒免疫样本;在黑盒免疫防御中,提出了基于矩的免疫防御(Moment-based Immune Defense,MID)以提升免疫样本的可迁移性,从而确保免疫样本对未知对抗攻击的防御性能.此外,本文还提出了免疫率以更加准确地衡量免疫样本的防御性能.在CIFAR-10、MNIST、STL-10和Caltech-256数据集上的大量实验表明,HTID和MID制作的免疫样本具有高分类准确率,在Inception-v3、ResNet-50、LeNet-5和Model C上的准确率均达到了100.0%,比原始准确率平均高出10.5%.制作的免疫样本同时具有高视觉质量,其SSIM最低为0.822,最高为0.900.实验也表明MID有着比HTID更高的可迁移性,MID在四个数据集上针对AdvGAN制作的免疫样本防御其他11种对抗攻击的平均免疫率分别为62.1%、52.1%、56.8%和48.7%,这比HTID高出15.0%、10.8%、17.5%和15.7%. 展开更多
关键词 深度神经网络 对抗样本 对抗防御 免疫防御 可迁移性
在线阅读 下载PDF
AMS-FGSM:一种对抗样本生成的梯度参数更新方法
14
作者 诸云 吴祎楠 +1 位作者 郭佳 王建宇 《南京理工大学学报》 CAS CSCD 北大核心 2024年第5期635-641,共7页
深度神经网络在多种模式识别任务上均取得卓越表现,然而相关研究表明深度神经网络非常脆弱,极易受到对抗样本的攻击。人眼不易察觉的对抗样本还具有迁移性,即针对某个模型生成的对抗样本会使其他不同的深度模型产生误判。该文针对对抗... 深度神经网络在多种模式识别任务上均取得卓越表现,然而相关研究表明深度神经网络非常脆弱,极易受到对抗样本的攻击。人眼不易察觉的对抗样本还具有迁移性,即针对某个模型生成的对抗样本会使其他不同的深度模型产生误判。该文针对对抗样本的迁移性,提出了基于Adam优化算法的快速梯度符号方法(AMS-FGSM),可替代原有的迭代梯度符号方法(I-FGSM)。不同于I-FGSM,AMS-FGSM结合了动量与AMSGrad算法的优势。在手写数据集MNIST上的实验表明,结合了AMS-FGSM的对抗样本生成方法能更快速地生成攻击成功率更高的对抗样本,在训练模型上的平均成功率达到98.1%,对模型的攻击成功率随扰动次数的增加而保持稳定,表现较好。 展开更多
关键词 对抗样本 梯度更新 黑盒攻击 深度神经网络 人工智能
在线阅读 下载PDF
SAR目标识别对抗攻击综述:从数字域迈向物理域
15
作者 阮航 崔家豪 +4 位作者 毛秀华 任建迎 罗镔延 曹航 李海峰 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第6期1298-1326,共29页
基于深度神经网络的合成孔径雷达(SAR)图像目标识别已成为SAR应用领域的研究热点和前沿方向。然而,有研究指出深度神经网络模型易受到对抗样本攻击。对抗样本定义为在数据集内故意引入微小扰动所产生的输入样本,这种扰动足以使模型高信... 基于深度神经网络的合成孔径雷达(SAR)图像目标识别已成为SAR应用领域的研究热点和前沿方向。然而,有研究指出深度神经网络模型易受到对抗样本攻击。对抗样本定义为在数据集内故意引入微小扰动所产生的输入样本,这种扰动足以使模型高信度地产生错误判断。现有SAR对抗样本生成技术本质上仅作用于二维图像,即为数字域对抗样本。尽管近期有部分研究开始将SAR成像散射机理考虑用于对抗样本生成,但是仍然存在两个重要缺陷,一是仅在SAR图像上考虑成像散射机理,而没有将其置于SAR实际成像过程中进行考虑;二是在机制上无法实现三维物理域的攻击,即只实现了伪物理域对抗攻击。该文对SAR智能识别对抗攻击的技术现状和发展趋势进行了研究。首先,详细梳理了传统SAR图像对抗样本技术的发展脉络,并对各类技术的特点进行了对比分析,总结了现有技术存在的不足;其次,从SAR成像原理和实际过程出发,提出了物理域对抗攻击技术,通过调整目标物体的后向散射特性,或通过发射振幅和相位精细可调的干扰信号来实现对SAR智能识别算法对抗攻击的新思路,并展望了SAR对抗攻击在物理域下的具体实现方式;最后,进一步讨论了未来SAR智能对抗攻击技术的发展方向。 展开更多
关键词 对抗样本 合成孔径雷达(SAR) SAR目标识别 物理域对抗攻击 深度神经网络(DNN)
在线阅读 下载PDF
基于雅可比显著图的电磁信号快速对抗攻击方法
16
作者 张剑 周侠 +1 位作者 张一然 王梓聪 《通信学报》 EI CSCD 北大核心 2024年第1期180-193,共14页
为了生成高质量的电磁信号对抗样本,提出了快速雅可比显著图攻击(FJSMA)方法。FJSMA通过计算攻击目标类别的雅可比矩阵,并根据该矩阵生成特征显著图,之后迭代选取显著性最强的特征点及其邻域内连续特征点添加扰动,同时引入单点扰动限制... 为了生成高质量的电磁信号对抗样本,提出了快速雅可比显著图攻击(FJSMA)方法。FJSMA通过计算攻击目标类别的雅可比矩阵,并根据该矩阵生成特征显著图,之后迭代选取显著性最强的特征点及其邻域内连续特征点添加扰动,同时引入单点扰动限制,最后生成对抗样本。实验结果表明,与雅可比显著图攻击方法相比,FJSMA在保持与之相同的高攻击成功率的同时,生成速度提升了约10倍,相似度提升了超过11%;与其他基于梯度的方法相比,攻击成功率提升了超过20%,相似度提升了20%~30%。 展开更多
关键词 深度神经网络 对抗样本 电磁信号调制识别 雅可比显著图 目标攻击
在线阅读 下载PDF
基于Transformer和GAN的对抗样本生成算法 被引量:5
17
作者 刘帅威 李智 +1 位作者 王国美 张丽 《计算机工程》 CAS CSCD 北大核心 2024年第2期180-187,共8页
对抗攻击与防御是计算机安全领域的一个热门研究方向。针对现有基于梯度的对抗样本生成方法可视质量差、基于优化的方法生成效率低的问题,提出基于Transformer和生成对抗网络(GAN)的对抗样本生成算法Trans-GAN。首先利用Transformer强... 对抗攻击与防御是计算机安全领域的一个热门研究方向。针对现有基于梯度的对抗样本生成方法可视质量差、基于优化的方法生成效率低的问题,提出基于Transformer和生成对抗网络(GAN)的对抗样本生成算法Trans-GAN。首先利用Transformer强大的视觉表征能力,将其作为重构网络,用于接收干净图像并生成攻击噪声;其次将Transformer重构网络作为生成器,与基于深度卷积网络的鉴别器相结合组成GAN网络架构,提高生成图像的真实性并保证训练的稳定性,同时提出改进的注意力机制Targeted Self-Attention,在训练网络时引入目标标签作为先验知识,指导网络模型学习生成具有特定攻击目标的对抗扰动;最后利用跳转连接将对抗噪声施加在干净样本上,形成对抗样本,攻击目标分类网络。实验结果表明:Trans-GAN算法针对MNIST数据集中2种模型的攻击成功率都达到99.9%以上,针对CIFAR10数据集中2种模型的攻击成功率分别达到96.36%和98.47%,优于目前先进的基于生成式的对抗样本生成方法;相比快速梯度符号法和投影梯度下降法,Trans-GAN算法生成的对抗噪声扰动量更小,形成的对抗样本更加自然,满足人类视觉不易分辨的要求。 展开更多
关键词 深度神经网络 对抗样本 对抗攻击 Transformer模型 生成对抗网络 注意力机制
在线阅读 下载PDF
基于掩码语言模型的中文BERT攻击方法 被引量:3
18
作者 张云婷 叶麟 +2 位作者 唐浩林 张宏莉 李尚 《软件学报》 EI CSCD 北大核心 2024年第7期3392-3409,共18页
对抗文本是一种能够使深度学习分类器作出错误判断的恶意样本,敌手通过向原始文本中加入人类难以察觉的微小扰动制作出能欺骗目标模型的对抗文本.研究对抗文本生成方法,能对深度神经网络的鲁棒性进行评价,并助力于模型后续的鲁棒性提升... 对抗文本是一种能够使深度学习分类器作出错误判断的恶意样本,敌手通过向原始文本中加入人类难以察觉的微小扰动制作出能欺骗目标模型的对抗文本.研究对抗文本生成方法,能对深度神经网络的鲁棒性进行评价,并助力于模型后续的鲁棒性提升工作.当前针对中文文本设计的对抗文本生成方法中,很少有方法将鲁棒性较强的中文BERT模型作为目标模型进行攻击.面向中文文本分类任务,提出一种针对中文BERT的攻击方法Chinese BERT Tricker.该方法使用一种汉字级词语重要性打分方法——重要汉字定位法;同时基于掩码语言模型设计一种包含两类策略的适用于中文的词语级扰动方法实现对重要词语的替换.实验表明,针对文本分类任务,所提方法在两个真实数据集上均能使中文BERT模型的分类准确率大幅下降至40%以下,且其多种攻击性能明显强于其他基线方法. 展开更多
关键词 深度神经网络 对抗样本 文本对抗攻击 中文BERT 掩码语言模型
在线阅读 下载PDF
基于多模型正交化的深度图像识别对抗鲁棒性增强技术 被引量:2
19
作者 逯子豪 徐延杰 +2 位作者 孙浩 计科峰 匡纲要 《信号处理》 CSCD 北大核心 2024年第3期503-515,共13页
近年来,深度神经网络(Deep Neural Networks,DNN)已被广泛应用于图像识别,目标检测,图像分割等多种计算机视觉任务中,并取得了巨大成功。然而,DNN模型因其本身的脆弱性,仍面临着对抗攻击等技术手段带来的安全隐患。攻击者在图像上恶意... 近年来,深度神经网络(Deep Neural Networks,DNN)已被广泛应用于图像识别,目标检测,图像分割等多种计算机视觉任务中,并取得了巨大成功。然而,DNN模型因其本身的脆弱性,仍面临着对抗攻击等技术手段带来的安全隐患。攻击者在图像上恶意地添加微小且人眼难以识别的扰动,可以让模型产生高置信度的错误输出。针对上述问题,集成多个DNN模型来提升对抗鲁棒性已成为有效的解决方案之一。但是,对抗样本在集成模型中的子模型间存在对抗迁移现象,可能使集成模型的防御效能大大降低,而且目前仍缺乏能够降低集成防御内部对抗迁移性的直观理论分析。本文引入损失场的概念并定量描述DNN模型间的对抗迁移性,重点关注和推导对抗迁移表达式的上界,发现促进模型损失场之间的正交性以及降低模型损失场的强度(Promoting Orthogonality and Reducing Strength,PORS)可以限制其上界大小,进而限制DNN模型间对抗迁移性。本文引入PORS惩罚项至原损失函数中,使集成模型能够保持在原始数据上的识别性能的同时,通过降低子模型间的对抗迁移性来增强整体的对抗鲁棒性。文章在CIFAR-10和MNIST数据集上对由PORS训练得到的集成模型开展实验,分别在白盒和黑盒攻击环境下与其他先进的集成防御方法进行对比实验,实验结果表明PORS可以显著提高对抗鲁棒性,在白盒攻击和原始数据集上能保持非常高的识别精度,尤其在黑盒迁移攻击中极为有效,在所有集成防御方法中表现最为稳定。 展开更多
关键词 深度神经网络 图像识别 对抗迁移性 集成防御 损失场
在线阅读 下载PDF
神经网络后门攻击与防御综述 被引量:2
20
作者 汪旭童 尹捷 +4 位作者 刘潮歌 徐辰晨 黄昊 王志 张方娇 《计算机学报》 EI CAS CSCD 北大核心 2024年第8期1713-1743,共31页
当前,深度神经网络(Deep Neural Network,DNN)得到了迅速发展和广泛应用,由于其具有数据集庞大、模型架构复杂的特点,用户在训练模型的过程中通常需要依赖数据样本、预训练模型等第三方资源.然而,不可信的第三方资源为神经网络模型的安... 当前,深度神经网络(Deep Neural Network,DNN)得到了迅速发展和广泛应用,由于其具有数据集庞大、模型架构复杂的特点,用户在训练模型的过程中通常需要依赖数据样本、预训练模型等第三方资源.然而,不可信的第三方资源为神经网络模型的安全带来了巨大的威胁,最典型的是神经网络后门攻击.攻击者通过修改数据集或模型的方式实现向模型中植入后门,该后门能够与样本中的触发器(一种特定的标记)和指定类别建立强连接关系,从而使得模型对带有触发器的样本预测为指定类别.为了更深入地了解神经网络后门攻击原理与防御方法,本文对神经网络后门攻击和防御进行了体系化的梳理和分析.首先,本文提出了神经网络后门攻击的四大要素,并建立了神经网络后门攻防模型,阐述了在训练神经网络的四个常规阶段里可能受到的后门攻击方式和防御方式;其次,从神经网络后门攻击和防御两个角度,分别基于攻防者能力,从攻防方式、关键技术、应用场景三个维度对现有研究进行归纳和比较,深度剖析了神经网络后门攻击产生的原因和危害、攻击的原理和手段以及防御的要点和方法;最后,进一步探讨了神经网络后门攻击所涉及的原理在未来研究上可能带来的积极作用. 展开更多
关键词 深度神经网络 触发器 后门攻击 后门防御 攻防模型
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部