随着Internet技术的快速发展,Web数据库数目庞大而且仍在快速增长。为有效组织利用深藏于Web数据库上的信息,需对其按领域进行分类和集成。Web页面上的查询接口是网络用户访问Web数据库的唯一途径,对Deep Web数据源分类可通过对查询接...随着Internet技术的快速发展,Web数据库数目庞大而且仍在快速增长。为有效组织利用深藏于Web数据库上的信息,需对其按领域进行分类和集成。Web页面上的查询接口是网络用户访问Web数据库的唯一途径,对Deep Web数据源分类可通过对查询接口分类实现。为此,提出一种基于查询接口文本VSM(Vector Space Model)的分类方法。首先,使用查询接口文本信息构建向量空间模型,然后通过典型的数据挖掘分类算法训练分类器,从而实现对查询接口所属领域进行分类。实验结果表明给出的方法具有良好的分类性能。展开更多
时间序列数据广泛来源于社会各个领域,从气象学到金融学再到医学,准确的长期预测是时间序列数据分析、处理与研究中的一个关键问题。针对时间序列数据中存在的不同尺度相关性的挖掘与利用,提出一种基于神经网络的多尺度信息融合时间序...时间序列数据广泛来源于社会各个领域,从气象学到金融学再到医学,准确的长期预测是时间序列数据分析、处理与研究中的一个关键问题。针对时间序列数据中存在的不同尺度相关性的挖掘与利用,提出一种基于神经网络的多尺度信息融合时间序列长期预测模型ScaleNN,旨在更好地处理时间序列数据中的多尺度问题,从而实现更准确的长期预测。首先,结合全连接神经网络和卷积神经网络,有效提取全局信息与局部信息,并将2种信息聚合后进行预测;其次,通过在全局信息表征模块中引入压缩机制,以更轻量化的结构接受更长的序列输入,增大模型的感知范围并提高模型效能。大量实验结果表明,ScaleNN在多个真实世界数据集上的性能优于当前该领域的优秀模型PatchTST(Patch Time Series Transformer),在运行时间降低35%的同时仅需19%的参数量。可见,ScaleNN可广泛应用于不同领域的时间序列预测问题,为交通流量预测、天气预报等领域提供预测的基础。展开更多
文摘随着Internet技术的快速发展,Web数据库数目庞大而且仍在快速增长。为有效组织利用深藏于Web数据库上的信息,需对其按领域进行分类和集成。Web页面上的查询接口是网络用户访问Web数据库的唯一途径,对Deep Web数据源分类可通过对查询接口分类实现。为此,提出一种基于查询接口文本VSM(Vector Space Model)的分类方法。首先,使用查询接口文本信息构建向量空间模型,然后通过典型的数据挖掘分类算法训练分类器,从而实现对查询接口所属领域进行分类。实验结果表明给出的方法具有良好的分类性能。
文摘时间序列数据广泛来源于社会各个领域,从气象学到金融学再到医学,准确的长期预测是时间序列数据分析、处理与研究中的一个关键问题。针对时间序列数据中存在的不同尺度相关性的挖掘与利用,提出一种基于神经网络的多尺度信息融合时间序列长期预测模型ScaleNN,旨在更好地处理时间序列数据中的多尺度问题,从而实现更准确的长期预测。首先,结合全连接神经网络和卷积神经网络,有效提取全局信息与局部信息,并将2种信息聚合后进行预测;其次,通过在全局信息表征模块中引入压缩机制,以更轻量化的结构接受更长的序列输入,增大模型的感知范围并提高模型效能。大量实验结果表明,ScaleNN在多个真实世界数据集上的性能优于当前该领域的优秀模型PatchTST(Patch Time Series Transformer),在运行时间降低35%的同时仅需19%的参数量。可见,ScaleNN可广泛应用于不同领域的时间序列预测问题,为交通流量预测、天气预报等领域提供预测的基础。