针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LST...针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LSTM-DDPG)的再入制导方法。该方法采用纵、侧向制导解耦设计思想,在纵向制导方面,首先针对再入制导问题构建强化学习所需的状态、动作空间;其次,确定决策点和制导周期内的指令计算策略,并设计考虑综合性能的奖励函数;然后,引入LSTM网络构建强化学习训练网络,进而通过在线更新策略提升算法的多任务适用性;侧向制导则采用基于横程误差的动态倾侧反转方法,获得倾侧角符号。以美国超音速通用飞行器(common aero vehicle-hypersonic,CAV-H)再入滑翔为例进行仿真,结果表明:与传统数值预测-校正方法相比,所提制导方法具有相当的终端精度和更高的计算效率优势;与现有基于DDPG算法的再入制导方法相比,所提制导方法具有相当的计算效率以及更高的终端精度和鲁棒性。展开更多
This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces ...This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces the long shortterm memory(LSTM) neural network into the recognition algorithm and combines the time-frequency(TF) analysis for signal preprocessing. Five kinds of navigation jamming signals including white Gaussian noise(WGN), pulse jamming, sweep jamming, audio jamming, and spread spectrum jamming are used as input for training and recognition. Since the signal parameters and quantity are unknown in the actual scenario, this work builds a data set containing multiple kinds and parameters jamming to train the TF-LSTM. The performance of this method is evaluated by simulations and experiments. The method has higher recognition accuracy and better robustness than the existing methods, such as LSTM and the convolutional neural network(CNN).展开更多
Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a vi...Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.展开更多
文摘针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LSTM-DDPG)的再入制导方法。该方法采用纵、侧向制导解耦设计思想,在纵向制导方面,首先针对再入制导问题构建强化学习所需的状态、动作空间;其次,确定决策点和制导周期内的指令计算策略,并设计考虑综合性能的奖励函数;然后,引入LSTM网络构建强化学习训练网络,进而通过在线更新策略提升算法的多任务适用性;侧向制导则采用基于横程误差的动态倾侧反转方法,获得倾侧角符号。以美国超音速通用飞行器(common aero vehicle-hypersonic,CAV-H)再入滑翔为例进行仿真,结果表明:与传统数值预测-校正方法相比,所提制导方法具有相当的终端精度和更高的计算效率优势;与现有基于DDPG算法的再入制导方法相比,所提制导方法具有相当的计算效率以及更高的终端精度和鲁棒性。
基金supported by the National Natural Science Foundation of China (62003354)。
文摘This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces the long shortterm memory(LSTM) neural network into the recognition algorithm and combines the time-frequency(TF) analysis for signal preprocessing. Five kinds of navigation jamming signals including white Gaussian noise(WGN), pulse jamming, sweep jamming, audio jamming, and spread spectrum jamming are used as input for training and recognition. Since the signal parameters and quantity are unknown in the actual scenario, this work builds a data set containing multiple kinds and parameters jamming to train the TF-LSTM. The performance of this method is evaluated by simulations and experiments. The method has higher recognition accuracy and better robustness than the existing methods, such as LSTM and the convolutional neural network(CNN).
基金National Natural Science Foundation of China(71690233,71971213,71901214)。
文摘Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.