期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
基于TVFEMDⅡ-十种鱼群算法-DHKELM模型的日含沙量预测 被引量:1
1
作者 邓智予 谢静 崔东文 《中国农村水利水电》 北大核心 2025年第3期61-70,共10页
为提高日含沙量时间序列预测精度,改进深度混合核极限学习机(DHKELM)预测性能,对比验证十种鱼群算法——电鳗觅食优化算法(EEFO)/成吉思汗鲨鱼优化(GKSO)算法/白鲸优化(BWO)算法/白鲨优化(WSO)算法/鲸鱼优化算法(WOA)/金枪鱼优化(TSO)算... 为提高日含沙量时间序列预测精度,改进深度混合核极限学习机(DHKELM)预测性能,对比验证十种鱼群算法——电鳗觅食优化算法(EEFO)/成吉思汗鲨鱼优化(GKSO)算法/白鲸优化(BWO)算法/白鲨优化(WSO)算法/鲸鱼优化算法(WOA)/金枪鱼优化(TSO)算法/旗鱼优化(SFO)算法/海洋捕食者算法(MPA)/?鱼优化算法(ROA)/蝠鲼觅食优化(MRFO)算法在基准测试函数和实例目标函数上的优化效果,提出时变滤波器经验模态二次分解(TVFEMDⅡ)-十种鱼群算法-DHKELM日含沙量时间序列预测模型。首先,利用TVFEMDⅡ对日含沙量时间序列进行分解处理,得到若干分解分量,合理划分训练集和预测集;其次,基于各分量训练集构建DHKELM超参数优化实例目标函数,同时选取8个基准测试函数作为对比验证函数,利用十种鱼群算法分别对基准测试函数和实例目标函数进行极值寻优与对比分析。最后,建立TVFEMDⅡ-十种鱼群算法-DHKELM模型,通过云南省龙潭站汛期日含沙量预测实例对各模型进行验证。结果表明:(1)十种鱼群算法对基准测试函数寻优总排名与对实例目标函数寻优总排名仅有10%相同,总体上EEFO、GKSO寻优效果较好,ROA、WSO较差。(2)十种鱼群算法对实例目标函数寻优总排名与十种鱼群算法优化的各模型预测精度总排名基本一致,表明鱼群算法极值寻优能力越强,其优化获得的DHKELM超参数越优,由此构建的预测模型性能越好,日含沙量预测精度越高。(3)TVFEMDⅡ-十种鱼群算法-DHKELM模型对实例日含沙量预测的平均绝对百分比误差(MAPE)在0.927%~1.583%之间,模型计算规模小、预测精度高、稳健性能好,具有较好的实用价值和意义。(4)在分解分量十分有限的情形下,TVFEMDⅡ能将复杂的日含沙量时间序列分解为更具规律、更易建模预测的模态分量,大大改进时间序列分解效果,显著提升日含沙量预测精度。 展开更多
关键词 日含沙量预测 时变滤波器经验模态分解 二次分解 十种鱼群算法 深度混合核极限学习机 函数优化
在线阅读 下载PDF
基于混合特征选择和INGO-DHKELM的变压器故障诊断方法 被引量:1
2
作者 李多 张莲 +3 位作者 赵娜 谢文龙 黄伟 季鸿宇 《南方电网技术》 CSCD 北大核心 2024年第8期19-28,共10页
针对变压器故障特征选择困难和诊断模型准确率较低的问题,提出一种混合式故障特征选择方法,并利用改进北方苍鹰优化算法(improved northern goshawk optimization algorithm,INGO)优化深度混合核极限学习机(deep hybrid kernel limit le... 针对变压器故障特征选择困难和诊断模型准确率较低的问题,提出一种混合式故障特征选择方法,并利用改进北方苍鹰优化算法(improved northern goshawk optimization algorithm,INGO)优化深度混合核极限学习机(deep hybrid kernel limit learning machine,DHKELM)实现变压器故障诊断。首先,基于相关比值法构建24维变压器故障特征集,从线性相关和非线性相关的角度出发,采用Pearson相关系数和互信息法,筛除相关性较低的特征。其次,引入Logistic混沌映射、随机反向学习和自适应t分布变异改进NGO算法,提升其寻优性能。然后,利用INGO算法对保留特征进行二次筛选,获得最优输入特征。最后,将极限学习机自动编码器引入混合核极限学习机中,建立DHKELM诊断模型,利用INGO对DHKELM模型初始参数进行优化,完成INGO-DHKELM变压器故障诊断模型的构建。实验表明,与常规特征选择方法相比,利用混合式故障特征选择方法所选择的输入特征进行故障诊断能够有效提升诊断准确率;相较于其他优化型诊断模型,INGO-DHKELM具有更高的准确率和更好的稳定性。 展开更多
关键词 变压器 故障诊断 特征选择 北方苍鹰优化算法 深度混合核极限学习机
在线阅读 下载PDF
改进SSA-HKELM模型在海洋弯管剩余寿命预测中的应用 被引量:1
3
作者 骆正山 王良雨 +1 位作者 高懿琼 骆济豪 《安全与环境学报》 北大核心 2025年第5期1770-1779,共10页
针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布... 针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布,采用黄金正弦、Tent混沌扰动和柯西变异提高麻雀搜索算法(Sparrow Search Algorithm,SSA)的收敛速度和搜索能力,运用ISSA算法优化HKELM的网络参数,构建海洋弯管腐蚀深度预测模型。依据改进的ASME B31G剩余强度评价准则,计算最大允许腐蚀深度,结合管道腐蚀发展趋势模型,对薄弱弯管进行腐蚀剩余寿命预测。以某海洋管道弯管试验数据为基础对模型进行验证,模型预测精度高达0.989 7,能较好地预测海洋弯管的最大腐蚀深度及未来腐蚀发展趋势。寿命预测结果表明,部分弯管剩余寿命未超过其预期服役时间,为海洋弯管的安全运维及维修更换提供了决策支持。 展开更多
关键词 安全工程 海洋弯管 剩余寿命 改进麻雀搜索算法 混合核极限学习机 腐蚀深度预测模型
在线阅读 下载PDF
基于改进蜣螂优化算法深度混合核极限学习机的高压断路器故障诊断
4
作者 范兴明 许洪华 +3 位作者 张思舜 李涛 蒋延军 张鑫 《电工技术学报》 北大核心 2025年第12期3994-4003,共10页
针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的... 针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的固有模态分量(IMF);其次,提取各IMF分量的功率谱熵构建特征向量矩阵,并利用t分布-随机邻域嵌入算法(t-SNE)对特征向量进行数据降维;然后,引入融合Tent混沌映射、黄金正弦策略、自适应t分布扰动策略对传统蜣螂优化算法(DBO)进行改进,并使用IDBO对DHKELM进行参数优化,完成IDBO-DHKELM高压断路器故障诊断模型的构建;最后,通过搭建模拟故障的实物断路器实验平台进行验证,结果表明,该文提出的方法在故障诊断上的准确率达到了98.33%,相较于其他故障诊断模型在多项分类评价指标上均有显著提升,为准确、可靠地诊断高压断路器机械故障提供了新方案。 展开更多
关键词 高压断路器 改进蜣螂优化算法 深度混合核极限学习机 故障诊断 逐次变分模 态分解
在线阅读 下载PDF
极薄煤层破碎顶板条件下液压支架带压移架残余支撑力决策方法
5
作者 张传伟 张刚强 +4 位作者 路正雄 李林岳 何正伟 龚凌霄 黄骏峰 《工矿自动化》 北大核心 2025年第3期22-31,38,共11页
在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深... 在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深度混合核极限学习机(DHKELM)的液压支架带压移架残余支撑力决策方法。在混合核极限学习机(HKELM)基础上引入极限学习机自动编码器(ELM-AE)结构来构建DHKELM模型,以增强对复杂输入的特征提取和非线性映射能力;引入ICMIC混沌映射、Lévy飞行和贪婪策略对蜣螂算法(DBO)进行改进,形成具备更高寻优精度和更快收敛速度的IDBO算法;利用IDBO算法优化DHKELM模型的超参数,建立IDBO-DHKELM模型。结合极薄煤层综采工作面液压支架带压移架实测数据,通过可视化和相关性分析,确定支架号、带压移架前支架支撑力、推移油缸进液压力和推移油缸行程变化速度作为影响残余支撑力的关键特征,并构建残余支撑力决策样本数据集,最终完成IDBO-DHKELM模型的训练与评估。实验结果表明:基于IDBO-DHKELM模型的液压支架带压移架残余支撑力决策结果的均方根误差(RMSE)、平均绝对误差(MAE)及决定系数(R^(2))分别为0.143,0.119,0.971,具有较高的决策精确度。 展开更多
关键词 极薄煤层 液压支架 带压移架 残余支撑力 改进蜣螂算法 深度混合核极限学习机
在线阅读 下载PDF
基于CEEMD的分特征组合超短期负荷预测模型
6
作者 商立群 贾丹铭 +1 位作者 安迪 王俊昆 《广西师范大学学报(自然科学版)》 北大核心 2025年第5期41-51,共11页
电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始... 电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始数据进行分解,再利用排列熵(permutation entropy,PE)阈值进行分量分流。高频信号采用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)预测,低频信号则通过混合核极限学习机(hybrid kernel extreme learning machine,HKELM)并结合雪消融优化算法(snow ablation optimizer,SAO)进行优化预测。最终,各分量预测结果叠加得到综合预测值。通过实例分析,模型的均方根误差、平均绝对误差和平均绝对百分比误差分别为61.61 kW、43.91 kW和0.38%,显著优于传统模型。实验结果表明,该模型充分发掘数据内在特征、结合各方法预测优势,在超短期负荷预测中具有较高的精度。 展开更多
关键词 短期电力负荷预测 CEEMD 排列熵 双向长短期记忆网络 极限学习机 智能优化算法
在线阅读 下载PDF
基于改进北方苍鹰算法与混合核极限学习机的齿轮箱故障诊断 被引量:1
7
作者 杜董生 王梦姣 +1 位作者 冒泽慧 赵环宇 《控制理论与应用》 北大核心 2025年第4期796-804,共9页
针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪... 针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪后的信号分解成多个本征模态函数(IMF),使用方差贡献率、相关系数和信息熵筛选出最优的IMF.将最优IMF重构后,对重构信号进行时间同步平均(TSA)去噪以减少故障诊断模型的数据计算量.将Tent混沌映射、混合正弦余弦算法和Levy飞行策略用于改进北方苍鹰优化(NGO)算法,得到一种新的INGO算法.同时,引入余弦因子以平衡正弦余弦算法的全局和局部开发能力.最后,利用INGO算法对HKELM进行优化,用以提高HKELM模型的故障诊断准确率.将所提方法应用于两个案例对模型进行检验,实验结果表明,本文所提方法具有可行性和优越性. 展开更多
关键词 混合核极限学习机 改进北方苍鹰优化算法 时变滤波经验模态分解 故障诊断
在线阅读 下载PDF
基于IDBO-HKELM-Adaboost的煤与瓦斯突出危险性预测方法
8
作者 李曼 徐耀松 +1 位作者 王雨虹 王丹丹 《传感技术学报》 北大核心 2025年第3期477-486,共10页
为实现更加高效准确地完成煤与瓦斯突出危险性预测,提出了一种采用Adaboost算法增强的改进蜣螂算法(IDBO)优化混合核极限学习机(HKELM)的预测模型。首先,在数据降维时采用核主成分分析(KPCA)对影响因素进行处理并提取有效的特征量,得到... 为实现更加高效准确地完成煤与瓦斯突出危险性预测,提出了一种采用Adaboost算法增强的改进蜣螂算法(IDBO)优化混合核极限学习机(HKELM)的预测模型。首先,在数据降维时采用核主成分分析(KPCA)对影响因素进行处理并提取有效的特征量,得到预处理样本数据。将PWLCM混沌映射、非线性递减策略以及邻域学习机制融入到蜣螂算法中,之后,利用IDBO对HKELM的关键参数进行寻优,构建IDBO-HKELM煤与瓦斯突出危险性分类预测模型。最后,使用Adaboost算法对IDBO-HKELM模型进行增强。结合工程实际数据进行验证,验证结果表明:相较于其他模型,基于IDBO-HKELM-Adaboost的预测方法具有更高的预测精度,在提高运算效率的同时满足煤与瓦斯突出预测的精度和可靠性要求,准确率达到97.44%。 展开更多
关键词 煤与瓦斯突出 突出预测 改进蜣螂算法 混合核极限学习机 核主成分分析 预测模型
在线阅读 下载PDF
基于IDOA-DHKELM的变压器故障诊断 被引量:13
9
作者 商立群 侯亚东 +3 位作者 黄辰浩 李洪波 惠泽 张建涛 《高电压技术》 EI CAS CSCD 北大核心 2023年第11期4726-4735,共10页
针对溶解气体分析(dissolved gas analysis,DGA)诊断变压器故障准确率偏低的问题,提出了一种基于改进野犬优化算法(improved dingo optimization algorithm,IDOA)优化深度混合核极限学习机(deep hybrid kernel extreme learning machine... 针对溶解气体分析(dissolved gas analysis,DGA)诊断变压器故障准确率偏低的问题,提出了一种基于改进野犬优化算法(improved dingo optimization algorithm,IDOA)优化深度混合核极限学习机(deep hybrid kernel extreme learning machine,DHKELM)的变压器故障诊断方法。首先采用核主成分分析(kernel principal component analysis,KPCA)对气体数据降维并提取有效的特征量;其次将多项式核函数与高斯核函数加权结合,构造出新的混合核函数,并引入自动编码器对极限学习机进行改进,建立DHKELM模型。将反向学习、柯西变异和差分进化算法融入到野犬算法中,并利用2种典型的测试函数对IDOA性能进行测试,证明了IDOA具有更强的稳定性和寻优能力。利用IDOA对DHKELM的关键参数进行寻优,建立IDOA-DHKELM变压器故障诊断模型。最后,将KPCA提取的特征量作为模型的输入集,并对不同变压器故障诊断模型进行仿真验证。研究结果表明,相较于其他模型,IDOA-DHKELM具有更高的变压器故障诊断精度。 展开更多
关键词 变压器 故障诊断 溶解气体分析 深度极限学习机 混合核函数 改进野犬优化算法
在线阅读 下载PDF
基于边缘智能的电磁能装备轻量化故障诊断方法
10
作者 单南良 徐兴华 +2 位作者 鲍先强 丁启翔 廖涛 《电工技术学报》 北大核心 2025年第3期821-831,共11页
随着海量状态监测数据的获取,复杂电磁能装备的关键部件健康状态监测对于实时性和可靠性的要求不断增加,研究利用边缘智能技术赋能装备故障诊断是一种很有发展前景的方法。边缘智能技术致力于将智能算法和算力资源下沉到设备端,在靠近... 随着海量状态监测数据的获取,复杂电磁能装备的关键部件健康状态监测对于实时性和可靠性的要求不断增加,研究利用边缘智能技术赋能装备故障诊断是一种很有发展前景的方法。边缘智能技术致力于将智能算法和算力资源下沉到设备端,在靠近数据源的位置对数据进行处理,能够很好地解决工业嵌入式系统资源受限和海量数据传输所带来的故障诊断时延,防止设备过度损坏。该文提出一种基于边缘智能的轻量化故障诊断方法,在数据采集过程中利用压缩感知技术将密集型的多元监测数据非线性压缩为稀疏采样数据,故障诊断模型集成了深度极限学习机和核函数,深度挖掘压缩采样信号与故障类型之间的内在联系。通过模型轻量化技术,将诊断模型部署在设备端的边缘智能计算卡上,显著降低了数据的传输、计算和存储压力,从而提高了智能故障诊断的实时性。 展开更多
关键词 压缩感知 深度极限学习机 核函数 轻量化故障诊断
在线阅读 下载PDF
基于IDBO-HKELM的冷水机组故障诊断方法
11
作者 王宏 储盼 +3 位作者 管大松 郭洋 田增瑞 盛英杰 《科学技术与工程》 北大核心 2025年第22期9505-9513,共9页
冷水机组作为建筑中的关键设备和主要能耗源,若其发生故障不仅会影响系统的正常运行,还会造成严重的能源浪费。为提升冷水机组系统运行的可靠性,构建了一种多策略改进蜣螂优化算法(improve dung beetle optimizer,IDBO)和混合核极限学习... 冷水机组作为建筑中的关键设备和主要能耗源,若其发生故障不仅会影响系统的正常运行,还会造成严重的能源浪费。为提升冷水机组系统运行的可靠性,构建了一种多策略改进蜣螂优化算法(improve dung beetle optimizer,IDBO)和混合核极限学习机(hybrid kernel extreme learning machine,HKELM)融合的故障诊断模型,用于实现冷水机组早期故障的精确诊断。该模型首先采用混合核函数提高核极限学习机(kernel extreme learning machine,KELM)的学习能力和泛化性,其次将Bernoulli映射、自适应惯性因子和Levy飞行融合动态权重系数策略用于改进蜣螂优化算法(dung beetle optimizer,DBO),以平衡DBO算法的全局探索性能。最后通过基准函数验证IDBO算法的有效性,利用IDBO算法对HKELM超参数进行优化,从而构建用于冷水机组早期故障诊断的数据驱动模型。通过相关训练仿真和实验验证,所提出的IDBO-HKELM模型对冷水机组的早期故障诊断准确率提高到99.71%,对比其他算法具有明显优势。 展开更多
关键词 冷水机组 群体算法 HKELM IDBO算法 故障诊断
在线阅读 下载PDF
基于HPO-VMD和MISMA-DHKELM的短期光伏功率组合预测 被引量:10
12
作者 王超 蔺红 庞晓虹 《太阳能学报》 EI CSCD 北大核心 2023年第12期65-73,共9页
为提高光伏发电功率的预测精度,提出一种优化变分态分解(VMD)、多策略改进黏菌优化算法(MISMA)和深度混合核极限学习机(DHKELM)的短期光伏功率组合预测方法。首先,利用VMD分解技术将不同天气类型的功率数据分解成多个模态分量,为避免模... 为提高光伏发电功率的预测精度,提出一种优化变分态分解(VMD)、多策略改进黏菌优化算法(MISMA)和深度混合核极限学习机(DHKELM)的短期光伏功率组合预测方法。首先,利用VMD分解技术将不同天气类型的功率数据分解成多个模态分量,为避免模态分量间的频率混淆,使用狩猎者(HPO)算法优化VMD的关键参数-分解层数和惩罚因子;然后,针对不同天气类型分解的各分量建立DHKELM预测模型,并采用MISMA优化DHKELM模型的超参数;最后,将各模态分量预测结果求和重构作为最终预测结果。利用新疆某光伏电站的实际数据进行实验分析,实验结果表明:该方法在不同天气类型下均能实现较好的预测效果,预测精度明显优于单一预测模型,与其他方法对比,验证了该方法的有效性。 展开更多
关键词 光伏功率 变分模态分解 组合预测 多策略改进黏菌算法 深度混合核极限学习机
在线阅读 下载PDF
基于IHHO-HKELM输电线路覆冰预测模型 被引量:5
13
作者 黄力 宋爽 +4 位作者 刘闯 王骏骏 胡丹 何其新 鲁偎依 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期33-41,共9页
为了进一步提高输电线路覆冰预测精度,提出一种基于改进哈里斯鹰算法(improved harris hawk optimiza-tion,IHHO)优化混合核极限学习机(hybrid kernel extreme learning machine,HKELM)的输电线路覆冰预测模型。在核极限学习机(KELM)中... 为了进一步提高输电线路覆冰预测精度,提出一种基于改进哈里斯鹰算法(improved harris hawk optimiza-tion,IHHO)优化混合核极限学习机(hybrid kernel extreme learning machine,HKELM)的输电线路覆冰预测模型。在核极限学习机(KELM)中引入混合核函数,形成HKELM,利用黄金正弦、非线性递减能量指数和高斯随机游走等策略对IHHO算法进行改进;以IHHO算法的优化性能采用其对HKELM的权值向量和核参数进行优化,建立基于IHHO-HKELM的输电线路覆冰预测模型,并通过计算气象因素与覆冰厚度之间的灰色关联度确定覆冰预测模型的输入量。算例分析结果表明,IHHO-HKELM模型预测结果的均方误差、最大误差和平均相对误差分别为0.285、0.860 mm和2.83%,预测效果好于其他模型,将本文覆冰预测模型应用于其他覆冰线路,可获得良好的应用效果并验证模型的优越性和实用性。 展开更多
关键词 输电线路 覆冰预测 核极限学习机 混合核函数 改进哈里斯鹰算法
在线阅读 下载PDF
基于Adaboost-INGO-HKELM的变压器故障辨识 被引量:8
14
作者 谢国民 江海洋 《电力系统保护与控制》 EI CSCD 北大核心 2024年第5期94-104,共11页
针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning ... 针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning machine, HKELM)进行训练学习,考虑到HKELM模型易受参数影响,所以利用北方苍鹰优化算法(northern goshawk optimization, NGO)对其参数进行寻优。但由于NGO收敛速度较慢,易陷入局部最优,引入切比雪夫混沌映射、择优学习、自适应t分布联合策略对其进行改进。同时为了提高模型整体的准确率,通过结合Adaboost集成算法,构建Adaboost-INGO-HKELM变压器故障辨识模型。最后,将提出的Adaboost-INGO-HKELM模型与未进行降维处理的INGO-HKELM模型、Isomap-INGO-KELM模型、Adaboost-Isomap-GWO-SVM等7种模型的测试准确率进行对比。提出的Adaboost-INGO-HKELM模型的准确率可达96%,均高于其他模型,验证了该模型对变压器故障辨识具有很好的效果。 展开更多
关键词 故障诊断 油浸式变压器 Adaboost集成算法 切比雪夫混沌映射 混合核极限学习机 等度量映射
在线阅读 下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测 被引量:5
15
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合核极限学习机 小波包变换 超参数优化
在线阅读 下载PDF
基于GRO优化的VMD-HKELM月蒸发量预测方法研究 被引量:2
16
作者 李菊 崔东文 《水文》 CSCD 北大核心 2024年第5期25-31,共7页
水面蒸发预测对于水库水量预测、区域水量平衡分析和水资源量核算等具有重要意义。水面蒸发量预测影响因素众多,并最终体现在随时间变化的蒸发量监测数据中。为此,基于淘金热(GRO)算法优化变分模态分解(VMD)-混合核极限学习机(HKELM)提... 水面蒸发预测对于水库水量预测、区域水量平衡分析和水资源量核算等具有重要意义。水面蒸发量预测影响因素众多,并最终体现在随时间变化的蒸发量监测数据中。为此,基于淘金热(GRO)算法优化变分模态分解(VMD)-混合核极限学习机(HKELM)提出两种方案。方案Ⅰ先对月蒸发量时间序列分解,后划分训练集、测试集;方案Ⅱ先对月蒸发量划分训练集、测试集,再进行时间序列分解。通过一种新型元启发式算法对分解技术VMD、预测器HKELM超参数进行目标寻优并建立多种模型,采用云南省龙潭寨、西洋街水文站月蒸发量预测实例对方案Ⅰ、方案Ⅱ各模型进行检验。结果表明:方案Ⅰ各模型性能优于方案Ⅱ,各模型的拟合精度和预测精度总体上随分解分量数的增加而提高,但方案Ⅰ使用了测试集信息,导致预测精度虚高;方案Ⅱ各模型具有较好的预测精度和稳健性能,其用于月蒸发量时间序列预测是可行的,反映出客观真实的预测效果,具有较好的实用价值和意义。 展开更多
关键词 变分模态分解 淘金热优化算法 混合核极限学习机 超参数优化 月蒸发量预测
在线阅读 下载PDF
基于OVMD-HWOA-KELM模型的变压器油中溶解气体体积分数预测方法 被引量:5
17
作者 谢明浩 张林鍹 +1 位作者 董小刚 许晋闻 《高电压技术》 EI CAS CSCD 北大核心 2024年第8期3793-3804,I0037,I0038,I0039,共15页
针对变压器油中溶解气体序列波动性、随机性较强难以精确预测的问题,提出一种基于最优变分模态分解(optimal variational mode decomposition,OVMD)、混合型鲸鱼优化算法(hybrid whale optimization algorithm,HWOA)和核极限学习机(kern... 针对变压器油中溶解气体序列波动性、随机性较强难以精确预测的问题,提出一种基于最优变分模态分解(optimal variational mode decomposition,OVMD)、混合型鲸鱼优化算法(hybrid whale optimization algorithm,HWOA)和核极限学习机(kernel extreme learning machine,KELM)的组合预测模型。首先,运用OVMD获取最优分解参数,并将原始序列分解为一系列相对平稳的分量;其次,通过在鲸鱼种群中融入混沌映射、非线性收敛参数、自适应权重因子和改进的算术优化算法提出HWOA算法,并利用测试函数验证HWOA算法的优越性;然后,对各分量分别构建KELM预测模型,使用HWOA优化KELM的关键参数。最后,将各分量的预测结果叠加重构,得到最终预测结果。案例分析表明,所提模型对变压器正常和异常案例预测的决定系数分别可达97.7%和93.46%,相较于现存方法,该模型具有更好的准确性和适应性,可为电力变压器运维管理提供有利技术支撑。 展开更多
关键词 油中溶解气体 最优变分模态分解 融合型鲸鱼优化算法 核极限学习机 变压器状态预测
在线阅读 下载PDF
基于VMD-SSA-HKELM的短期光伏功率预测 被引量:2
18
作者 杨荔强 崔双喜 《电源技术》 CAS 北大核心 2024年第6期1154-1159,共6页
为提高光伏功率的短期预测精度,提出一种变分模态分解(VMD)与麻雀搜索算法(SSA)优化混合核极限学习机(HKELM)相结合的短期光伏发电功率预测模型。运用皮尔逊相关系数(PCC)选取与光伏发电功率相关性较强的气象因素作为预测模型的输入变量... 为提高光伏功率的短期预测精度,提出一种变分模态分解(VMD)与麻雀搜索算法(SSA)优化混合核极限学习机(HKELM)相结合的短期光伏发电功率预测模型。运用皮尔逊相关系数(PCC)选取与光伏发电功率相关性较强的气象因素作为预测模型的输入变量;以平方欧氏距离作为衡量样本相似性的依据,筛选出不同天气类型下的最优训练样本。为降低数据的非平稳性,利用VMD将原始光伏功率数据分解为一系列不同带宽的模态分量,对各模态分量分别建立HKELM模型,通过引入SSA算法对HKELM模型进行参数寻优。将各模态分量的预测结果进行求和重构,得到光伏功率预测结果。仿真结果表明,相比于反向传播神经网络(BPNN)、极限学习机(ELM)、核极限学习机(VMDKELM)和混合核极限学习机(VMD-HKELM)模型,VMD-SSA-HKELM模型具有更高的预测精度,验证了本文模型的精确性和有效性。 展开更多
关键词 光伏功率预测 混合核极限学习机 变分模态分解 麻雀搜索算法
在线阅读 下载PDF
多极小波包变换与改进浣熊算法优化的混合核极限学习机径流预测 被引量:4
19
作者 刀海娅 程刚 崔东文 《中国农村水利水电》 北大核心 2024年第6期1-9,20,共10页
为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和... 为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和2个高频分量,并构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;其次,简要介绍COA算法原理,基于Circle映射等策略对COA进行改进,提出ICOA算法,通过8个典型函数对ICOA算法进行仿真验证,并与基本COA算法、鲸鱼优化算法(WOA)、灰狼优化算法(GWO)作对比,旨在验证ICOA算法的优化性能;最后,利用ICOA优化HKELM超参数(正则化参数、核参数、权重系数),建立MWPT-ICOA-HKELM模型,并构建MWPT-COA-HKELM、MWPT-WOA-HKELM、MWPT-GWO-HKELM、小波包变换(WPT)-ICOA-HKELM、小波变换(WT)-ICOA-HKELM、MWPT-ICOA-BP模型作对比分析,通过云南省景东、把边水文站2016-2020年日径流时间序列多步预测实例对各模型进行验证。结果表明:(1)ICOA具有较好的改进效果,仿真精度优于COA、WOA、GWO算法。(2)MWPT-ICOA-HKELM模型预测效果优于其他对比模型,其对实例单步预测效果“最好”,超前3步和超前5步“较好”,超前7步“较差”,预测精度随预测步长的增加而降低。(3)利用ICOA优化HKELM超参数,可显著提高HKELM预测性能,超参数优化效果优于COA、WOA、GWO算法。 展开更多
关键词 日径流预测 多极小波包变换 改进浣熊优化算法 混合核极限学习机 超参数优化
在线阅读 下载PDF
改进蜣螂算法优化混合核极限学习机的系统谐波阻抗估计 被引量:2
20
作者 夏焰坤 黄鹏 +2 位作者 任俊杰 朱赵晴 王宛婷 《电力系统及其自动化学报》 CSCD 北大核心 2024年第11期69-78,共10页
为准确估计系统谐波阻抗,提出一种改进蜣螂算法IDBO(improved dung beetle optimizer)优化混合核极限学习机HKELM(hybrid kernel extreme learning machine)的系统谐波阻抗估计方法。首先,在传统蜣螂算法基础上引入Cubic混沌映射、t分... 为准确估计系统谐波阻抗,提出一种改进蜣螂算法IDBO(improved dung beetle optimizer)优化混合核极限学习机HKELM(hybrid kernel extreme learning machine)的系统谐波阻抗估计方法。首先,在传统蜣螂算法基础上引入Cubic混沌映射、t分布扰动和高斯柯西变异扰动等方法,通过使用IDBO算法对HKELM进行多参数寻优;其次,将公共连接点处谐波电压和电流数据代入IDBO-HKELM,实现对系统谐波阻抗的精确估计;最后通过仿真和实例分析并对比多种方法,结果表明,所提方法在不同背景谐波波动条件和两侧阻抗差异场景下具有更好的估计精度。 展开更多
关键词 谐波阻抗估计 蜣螂算法 混合核极限学习机 谐波责任划分
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部