期刊文献+
共找到485篇文章
< 1 2 25 >
每页显示 20 50 100
Robust multi-layer extreme learning machine using bias-variance tradeoff 被引量:1
1
作者 YU Tian-jun YAN Xue-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3744-3753,共10页
As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large... As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise. 展开更多
关键词 extreme learning machine deep neural network ROBUSTNESS unsupervised feature learning
在线阅读 下载PDF
基于场因子分解的xDeepFM推荐模型
2
作者 李子杰 张姝 +2 位作者 欧阳昭相 王俊 吴迪 《应用科学学报》 CAS CSCD 北大核心 2024年第3期513-524,共12页
极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推... 极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推荐场景下的表现,提出一种基于场因子分解的xDeepFM改进模型。该模型通过场信息增强了特征的表达能力,并建立了多个交叉压缩网络以学习高阶组合特征。最后分析了用户场、项目场设定的合理性,并在3个不同规模的MovieLens系列数据集上通过受试者工作特征曲线下面积、对数似然损失指标进行性能评估,验证了该改进模型的有效性。 展开更多
关键词 推荐算法 极深因子分解机 场因子分解 深度学习
在线阅读 下载PDF
A Novel Kernel for Least Squares Support Vector Machine
3
作者 冯伟 赵永平 +2 位作者 杜忠华 李德才 王立峰 《Defence Technology(防务技术)》 SCIE EI CAS 2012年第4期240-247,共8页
Extreme learning machine(ELM) has attracted much attention in recent years due to its fast convergence and good performance.Merging both ELM and support vector machine is an important trend,thus yielding an ELM kernel... Extreme learning machine(ELM) has attracted much attention in recent years due to its fast convergence and good performance.Merging both ELM and support vector machine is an important trend,thus yielding an ELM kernel.ELM kernel based methods are able to solve the nonlinear problems by inducing an explicit mapping compared with the commonly-used kernels such as Gaussian kernel.In this paper,the ELM kernel is extended to the least squares support vector regression(LSSVR),so ELM-LSSVR was proposed.ELM-LSSVR can be used to reduce the training and test time simultaneously without extra techniques such as sequential minimal optimization and pruning mechanism.Moreover,the memory space for the training and test was relieved.To confirm the efficacy and feasibility of the proposed ELM-LSSVR,the experiments are reported to demonstrate that ELM-LSSVR takes the advantage of training and test time with comparable accuracy to other algorithms. 展开更多
关键词 计算技术 理论 方法 自动机理论
在线阅读 下载PDF
改进SSA-HKELM模型在海洋弯管剩余寿命预测中的应用 被引量:1
4
作者 骆正山 王良雨 +1 位作者 高懿琼 骆济豪 《安全与环境学报》 北大核心 2025年第5期1770-1779,共10页
针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布... 针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布,采用黄金正弦、Tent混沌扰动和柯西变异提高麻雀搜索算法(Sparrow Search Algorithm,SSA)的收敛速度和搜索能力,运用ISSA算法优化HKELM的网络参数,构建海洋弯管腐蚀深度预测模型。依据改进的ASME B31G剩余强度评价准则,计算最大允许腐蚀深度,结合管道腐蚀发展趋势模型,对薄弱弯管进行腐蚀剩余寿命预测。以某海洋管道弯管试验数据为基础对模型进行验证,模型预测精度高达0.989 7,能较好地预测海洋弯管的最大腐蚀深度及未来腐蚀发展趋势。寿命预测结果表明,部分弯管剩余寿命未超过其预期服役时间,为海洋弯管的安全运维及维修更换提供了决策支持。 展开更多
关键词 安全工程 海洋弯管 剩余寿命 改进麻雀搜索算法 混合核极限学习机 腐蚀深度预测模型
在线阅读 下载PDF
基于改进蜣螂优化算法深度混合核极限学习机的高压断路器故障诊断
5
作者 范兴明 许洪华 +3 位作者 张思舜 李涛 蒋延军 张鑫 《电工技术学报》 北大核心 2025年第12期3994-4003,共10页
针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的... 针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的固有模态分量(IMF);其次,提取各IMF分量的功率谱熵构建特征向量矩阵,并利用t分布-随机邻域嵌入算法(t-SNE)对特征向量进行数据降维;然后,引入融合Tent混沌映射、黄金正弦策略、自适应t分布扰动策略对传统蜣螂优化算法(DBO)进行改进,并使用IDBO对DHKELM进行参数优化,完成IDBO-DHKELM高压断路器故障诊断模型的构建;最后,通过搭建模拟故障的实物断路器实验平台进行验证,结果表明,该文提出的方法在故障诊断上的准确率达到了98.33%,相较于其他故障诊断模型在多项分类评价指标上均有显著提升,为准确、可靠地诊断高压断路器机械故障提供了新方案。 展开更多
关键词 高压断路器 改进蜣螂优化算法 深度混合核极限学习机 故障诊断 逐次变分模 态分解
在线阅读 下载PDF
有色金属行业碳排放情景预测研究——以陕西省为例
6
作者 杨玮 张林怡 +3 位作者 龙涛 邓莎 杨超 雷永康 《安全与环境学报》 北大核心 2025年第7期2858-2866,共9页
科学识别碳排放的主要影响因素并准确预测碳排放峰值对实现“双碳”目标具有重要意义。研究以能源、资源供应大省——陕西省为例,基于1997—2021年陕西省经济社会发展和有色金属能源消费数据,运用Lasso回归模型识别影响陕西省有色金属... 科学识别碳排放的主要影响因素并准确预测碳排放峰值对实现“双碳”目标具有重要意义。研究以能源、资源供应大省——陕西省为例,基于1997—2021年陕西省经济社会发展和有色金属能源消费数据,运用Lasso回归模型识别影响陕西省有色金属行业碳排放的主要影响因素,并通过构建粒子群算法(Particle Swarm Optimization, PSO)优化的深度极限学习机(Deep Extreme Learning Machine, DELM)模型对陕西省有色金属行业2022—2035年的碳排放进行情景预测。结果显示:省经济增速、能源消费总量、能源强度等6个因素是影响陕西省有色金属行业碳排放的主要因素;PSO-DELM模型的预测精度比DELM模型更高,其决定系数、平均绝对百分比误差、平均绝对误差和均方根误差分别为0.99、0.36%、0.02和0.03。情景预测结果表明,在低碳、基准和高碳情景下,陕西省有色金属行业碳排放将分别于2028年、2032年和2034年达峰,峰值分别为280.05万t、432.05万t和616.23万t。 展开更多
关键词 环境工程学 Lasso回归 深度极限学习机 粒子群优化算法 碳排放 情景预测
在线阅读 下载PDF
基于IEO-MKELM模型的重整产品辛烷值软测量方法
7
作者 陈晓彦 赵超 +2 位作者 付斌 李卫东 范克威 《石油与天然气化工》 北大核心 2025年第4期131-139,共9页
目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高... 目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高全局和局部搜索能力的改进平衡算法(IEO)。随后将这一改进后的平衡优化算法应用于多核极限学习机(MKELM)多项参数的优化,进而建立了催化重整产品辛烷值软测量模型。结果利用某炼化企业的实测数据对模型精度进行验证,结果表明,由IEO-MKELM模型得到的预测值与实测值间的误差在10^(−3)数量级以下,与其他同类模型相比,IEO-MKELM模型具有更高的预测精度。结论基于IEO-MKELM的辛烷值软测量方法研究对于提高催化重整生产过程的自动化水平具有重要意义。 展开更多
关键词 IEO-MKELM 平衡优化算法 多核极限学习机 辛烷值 软测量 预测模型
在线阅读 下载PDF
时移多尺度相位熵在螺栓联接结构松动检测中的应用
8
作者 李伟 周传彪 韩振华 《机电工程》 北大核心 2025年第9期1724-1733,共10页
风力发电机组的螺栓在其应用过程中易发生松动,会造成机组结构强度降低和振动加剧。针对螺栓松动检测策略普遍存在效率不佳、松动状态表征精度不高的问题,提出了一种结合时移多尺度相位熵(TSMPhE)和鲸鱼优化算法(WOA)优化混合核极限学习... 风力发电机组的螺栓在其应用过程中易发生松动,会造成机组结构强度降低和振动加剧。针对螺栓松动检测策略普遍存在效率不佳、松动状态表征精度不高的问题,提出了一种结合时移多尺度相位熵(TSMPhE)和鲸鱼优化算法(WOA)优化混合核极限学习机(HKELM)的风力发电机组螺栓松动检测策略。首先,对螺栓结构不同松紧程度的振动信号进行了TSMPhE分析,提取了信号中嵌入的反映螺栓松紧程度的特征信息,构造了特征样本;然后,利用WOA对HKELM的参数进行了优化,获得了核参数以及核函数权重最优的HKELM分类器模型;最后,将TSMPhE特征输入至WOA-HKELM中进行了松动检测,以判断螺栓组是否需要进行紧固;采用风力发电机组不同工况下的健康、轻度松动、重度松动和完全松动螺栓振动信号对该方法进行了实验分析,并将其与其他的检测策略进行了对比。研究结果表明:该策略能有效判断不同工况下螺栓的松紧程度,最低检测精度达到了94.38%以上,而平均检测精度也达到了96.56%以上;相较其他检测策略,TSMPhE有更高的检测准确率和更小的准确率波动,准确率至少提高了2.72%,准确率波动减小了0.44。该策略可为螺栓松动的精确和快速检测提供可行的思路。 展开更多
关键词 海上风力发电机组 螺栓联接 松动状态表征精度 时移多尺度相位熵 混合核极限学习机 鲸鱼优化算法
在线阅读 下载PDF
基于容量增量分析与VMD-GWO-KELM的锂电池健康状态估计
9
作者 陈峥 多功东 +3 位作者 申江卫 沈世全 刘昱 魏福星 《储能科学与技术》 北大核心 2025年第6期2476-2487,共12页
为克服传统健康状态估计方法中的特征提取质量不足、非线性特性复杂及模型参数优化困难等问题,本工作提出一种基于容量增量分析与VMD-GWO-KELM的健康状态估计方法。首先,本工作通过改进的基于洛伦兹函数的电压容量模型,对电池恒流充电... 为克服传统健康状态估计方法中的特征提取质量不足、非线性特性复杂及模型参数优化困难等问题,本工作提出一种基于容量增量分析与VMD-GWO-KELM的健康状态估计方法。首先,本工作通过改进的基于洛伦兹函数的电压容量模型,对电池恒流充电过程中的电压-容量数据进行拟合,提取峰电压、峰值和峰面积等健康特征,并利用灰狼优化算法完成模型参数识别,从而有效提升了特征提取质量和鲁棒性。其次,采用变分模态分解技术对健康状态信号进行多尺度分解,将模态分量作为独立子模型的输入,捕捉不同频域的关键特性,降低了信号混叠和噪声影响。然后,结合灰狼优化算法对核极限学习机模型的关键参数进行优化,显著提高了非线性拟合能力和估计精度。最后,通过不同训练量、不同估计模型对比和多电池数据的验证,全面评估模型性能。实验结果表明,本工作提出的算法在仅使用100次循环数据的情况下,即可实现高精度健康状态估计,平均绝对误差为0.9751%,最大误差为1.9340%,同时表现出良好的鲁棒性和泛化能力。 展开更多
关键词 锂离子电池 健康状态 容量增量分析 变分模态分解 灰狼优化 核极限学习机
在线阅读 下载PDF
基于变分模态分解和核极限学习机集成模型的电动汽车锂电池健康状态预测
10
作者 巫春玲 吕晶晶 +3 位作者 相里康 孟锦豪 黄鑫蓉 张震 《电源学报》 北大核心 2025年第6期288-299,共12页
在传统电动汽车锂电池预测中,往往将健康状态SOH(state-of-health)预测视作一个整体,进而给出单一SOH预测结果。但在汽车实际运行中,直接进行SOH的单一预测误差大,预测效果不好。为了提高电动汽车电池的SOH预测精度,提出了1种基于变分... 在传统电动汽车锂电池预测中,往往将健康状态SOH(state-of-health)预测视作一个整体,进而给出单一SOH预测结果。但在汽车实际运行中,直接进行SOH的单一预测误差大,预测效果不好。为了提高电动汽车电池的SOH预测精度,提出了1种基于变分模态分解和麻雀搜索算法优化的核极限学习机集成模型的新预测方法VMD-SSA-KELM。该方法通过变分模态分解电池SOH序列,降低SOH回升的影响;同时利用Person相关法减少噪声的影响,提高预测的准确性;引入核极限学习机KELM,在保留极限学习机优点的基础上,提高了预测的精度。基于4辆电动汽车的运行数据对提出的模型进行验证,结果表明与VMD-DBO-KELM、VMDPOA-KELM、VMD-KELM、VMD-ELM模型相比,所提模型的预测趋势与原数据趋势一致,其他模型的结果波动较大,新模型预测的均方根误差在0.20%内,预测精度更高,预测效率更快,所用时间更短,故可以证明所提方法具有更高的准确性和鲁棒性。 展开更多
关键词 锂电池 变分模态分解 核极限学习机 麻雀搜索算法
在线阅读 下载PDF
基于数据增强和优化DHKELM的短期光伏功率预测
11
作者 郭利进 马粽阳 胡晓岩 《太阳能学报》 北大核心 2025年第8期463-471,共9页
针对不同气象条件数据质量差异较大且光伏功率呈高波动性难以预测等问题,提出添加随机噪声的数据增强方法(DA)和改进的神经网络组合模型。首先利用谱聚类算法将光伏数据按不同气象条件进行分类,随后通过添加与输入同形状的随机噪声方法... 针对不同气象条件数据质量差异较大且光伏功率呈高波动性难以预测等问题,提出添加随机噪声的数据增强方法(DA)和改进的神经网络组合模型。首先利用谱聚类算法将光伏数据按不同气象条件进行分类,随后通过添加与输入同形状的随机噪声方法提升数据集的规模与质量。针对深度混合核极限学习机(DHKELM)超参数多等问题,提出融合佳点集初始化、黄金正弦更新策略、非线性扰动和最优个体自适应扰动的改进鹈鹕优化算法(IPOA)对其超参数寻优。最后以青海共和县光伏园内某电站数据为例,结果表明基于数据增强的改进鹈鹕算法优化深度混合核极限学习机(DA-IPOA-DHKELM)模型在不同天气、季节条件下预测误差最小,拟合度均能达到90%以上,改进模型预测精度高、算法适用性强。 展开更多
关键词 光伏功率 预测 聚类分析 数据增强 深度混合核极限学习机 改进算法
在线阅读 下载PDF
三相变频器回路串联故障电弧检测方法研究
12
作者 高洪鑫 王坤远 +1 位作者 王智勇 蔡佳成 《电子测量与仪器学报》 北大核心 2025年第1期203-215,共13页
串联故障电弧是引发电气火灾的主要因素之一,针对未知工况条件下串联故障电弧难以准确检测的问题,提出了一种基于实时训练更新核极限学习机(KELM)预测模型的串联故障电弧检测方法。首先,利用三相电动机和变频器负载开展了不同电源谐波... 串联故障电弧是引发电气火灾的主要因素之一,针对未知工况条件下串联故障电弧难以准确检测的问题,提出了一种基于实时训练更新核极限学习机(KELM)预测模型的串联故障电弧检测方法。首先,利用三相电动机和变频器负载开展了不同电源谐波、变频器载波频率、变频器运行频率和电流等级条件下的串联故障电弧实验;其次,利用奇异值分解滤波、改进一次指数平滑滤波依次对电流信号进行降噪处理;再次,利用前两个周波电流信号训练更新KELM预测模型,并计算预测模型对下一个周波电流信号的预测残差,然后利用预测残差绝对值构建矩阵,结合非负矩阵分解将残差矩阵降维成一维向量,并利用一维向量的最大值作为故障特征,结合固定阈值实现串联故障电弧检测;最后,测试了提出方法在未知工况条件下的串联故障电弧检测性能和抗噪性能。结果表明:提出方法可以有效检测出未知电源谐波、变频器载波频率、变频器运行频率和电流等级4类未知工况条件下的串联故障电弧,且具有较强的抗噪能力。 展开更多
关键词 串联故障电弧 核极限学习机 奇异值分解滤波 改进一次指数平滑滤波 预测残差 非负矩阵分解
在线阅读 下载PDF
极薄煤层破碎顶板条件下液压支架带压移架残余支撑力决策方法
13
作者 张传伟 张刚强 +4 位作者 路正雄 李林岳 何正伟 龚凌霄 黄骏峰 《工矿自动化》 北大核心 2025年第3期22-31,38,共11页
在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深... 在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深度混合核极限学习机(DHKELM)的液压支架带压移架残余支撑力决策方法。在混合核极限学习机(HKELM)基础上引入极限学习机自动编码器(ELM-AE)结构来构建DHKELM模型,以增强对复杂输入的特征提取和非线性映射能力;引入ICMIC混沌映射、Lévy飞行和贪婪策略对蜣螂算法(DBO)进行改进,形成具备更高寻优精度和更快收敛速度的IDBO算法;利用IDBO算法优化DHKELM模型的超参数,建立IDBO-DHKELM模型。结合极薄煤层综采工作面液压支架带压移架实测数据,通过可视化和相关性分析,确定支架号、带压移架前支架支撑力、推移油缸进液压力和推移油缸行程变化速度作为影响残余支撑力的关键特征,并构建残余支撑力决策样本数据集,最终完成IDBO-DHKELM模型的训练与评估。实验结果表明:基于IDBO-DHKELM模型的液压支架带压移架残余支撑力决策结果的均方根误差(RMSE)、平均绝对误差(MAE)及决定系数(R^(2))分别为0.143,0.119,0.971,具有较高的决策精确度。 展开更多
关键词 极薄煤层 液压支架 带压移架 残余支撑力 改进蜣螂算法 深度混合核极限学习机
在线阅读 下载PDF
二元混合气体成分检测的改进蒲公英算法研究
14
作者 李鹏 汤炼海 +2 位作者 林事力 纵彪 于涛 《传感器与微系统》 北大核心 2025年第2期15-20,共6页
针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策... 针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策略(EOBL)引入蒲公英种子位置更新,提高原算法寻优精度。将该算法用于KELM参数寻优,建立改进DO(IDO)算法优化KELM模型,实现对二元混合气体的成分识别。实验结果表明:IDO算法优化的KELM模型对二元混合气体成分识别准确率可达99.71%,比原始KELM模型提高4.28%。 展开更多
关键词 改进蒲公英优化算法 核极限学习机 气体分类
在线阅读 下载PDF
基于CEEMD的分特征组合超短期负荷预测模型
15
作者 商立群 贾丹铭 +1 位作者 安迪 王俊昆 《广西师范大学学报(自然科学版)》 北大核心 2025年第5期41-51,共11页
电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始... 电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始数据进行分解,再利用排列熵(permutation entropy,PE)阈值进行分量分流。高频信号采用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)预测,低频信号则通过混合核极限学习机(hybrid kernel extreme learning machine,HKELM)并结合雪消融优化算法(snow ablation optimizer,SAO)进行优化预测。最终,各分量预测结果叠加得到综合预测值。通过实例分析,模型的均方根误差、平均绝对误差和平均绝对百分比误差分别为61.61 kW、43.91 kW和0.38%,显著优于传统模型。实验结果表明,该模型充分发掘数据内在特征、结合各方法预测优势,在超短期负荷预测中具有较高的精度。 展开更多
关键词 短期电力负荷预测 CEEMD 排列熵 双向长短期记忆网络 极限学习机 智能优化算法
在线阅读 下载PDF
基于改进YOLOv7的核桃仁分级研究与试验
16
作者 于英杰 吴坤澍 +1 位作者 冉朋鑫 李加念 《智能化农业装备学报(中英文)》 2025年第4期17-23,共7页
中国核桃仁分级大多依靠机械和人工,经济成本高、效率低、精度差,严重影响核桃仁产品的标准化和经济价值。为实现核桃仁分级的自动化与智能化,本研究提出基于深度学习的核桃仁智能分级方法。利用图像采集装置采集纯白、淡绿与传送带3种... 中国核桃仁分级大多依靠机械和人工,经济成本高、效率低、精度差,严重影响核桃仁产品的标准化和经济价值。为实现核桃仁分级的自动化与智能化,本研究提出基于深度学习的核桃仁智能分级方法。利用图像采集装置采集纯白、淡绿与传送带3种不同颜色背景下的6个等级的核桃仁图像,使用Python的OpenCV库对图像进行数据增强扩充数据集,建立VOC格式数据集12246张,其中训练集、测试集与验证集的比例设置为8:1:1。为选取更适合完成核桃仁分级的模型,分别基于目标检测网络YOLOv5和YOLOv7构建核桃仁分级模型,采用加载预训练权重的方式训练模型,得到YOLOv5和YOLOv7模型核桃仁分级的平均准确率分别为87.83%和91.16%。在验证过程中YOLOv7预测到了错误的对象,引入两种注意力机制ECANet与CBAM对YOLOv7进行改进,改进后的两种模型的训练效果均有所提升,其中YOLOv7+CBAM模型效果更好,平均准确率为94.5%、F1评分为90.2%。改进后的YOLOv7核桃仁分类平均准确率和F1评分比YOLOv7高出3.34%和5.9%,并且推理时间比YOLOv7仅增加2 ms。为验证模型的可行性,搭建识别系统平台进行核桃仁等级识别分类测试,设置6种等级的核桃仁各20个,共120个核桃仁为一组,共4组试验。得到YOLOv7+CBAM模型的核桃仁平均识别正确率为91.63%。改进后的YOLOv7+CBAM模型可以实现对核桃仁外观品质的良好分级。本研究可为核桃仁智能化分级提供参考。 展开更多
关键词 核桃仁分级 YOLOv7 目标检测 注意力机制 机器视觉 深度学习
在线阅读 下载PDF
基于IDBO-HKELM-Adaboost的煤与瓦斯突出危险性预测方法 被引量:1
17
作者 李曼 徐耀松 +1 位作者 王雨虹 王丹丹 《传感技术学报》 北大核心 2025年第3期477-486,共10页
为实现更加高效准确地完成煤与瓦斯突出危险性预测,提出了一种采用Adaboost算法增强的改进蜣螂算法(IDBO)优化混合核极限学习机(HKELM)的预测模型。首先,在数据降维时采用核主成分分析(KPCA)对影响因素进行处理并提取有效的特征量,得到... 为实现更加高效准确地完成煤与瓦斯突出危险性预测,提出了一种采用Adaboost算法增强的改进蜣螂算法(IDBO)优化混合核极限学习机(HKELM)的预测模型。首先,在数据降维时采用核主成分分析(KPCA)对影响因素进行处理并提取有效的特征量,得到预处理样本数据。将PWLCM混沌映射、非线性递减策略以及邻域学习机制融入到蜣螂算法中,之后,利用IDBO对HKELM的关键参数进行寻优,构建IDBO-HKELM煤与瓦斯突出危险性分类预测模型。最后,使用Adaboost算法对IDBO-HKELM模型进行增强。结合工程实际数据进行验证,验证结果表明:相较于其他模型,基于IDBO-HKELM-Adaboost的预测方法具有更高的预测精度,在提高运算效率的同时满足煤与瓦斯突出预测的精度和可靠性要求,准确率达到97.44%。 展开更多
关键词 煤与瓦斯突出 突出预测 改进蜣螂算法 混合核极限学习机 核主成分分析 预测模型
在线阅读 下载PDF
基于改进北方苍鹰算法与混合核极限学习机的齿轮箱故障诊断 被引量:2
18
作者 杜董生 王梦姣 +1 位作者 冒泽慧 赵环宇 《控制理论与应用》 北大核心 2025年第4期796-804,共9页
针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪... 针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪后的信号分解成多个本征模态函数(IMF),使用方差贡献率、相关系数和信息熵筛选出最优的IMF.将最优IMF重构后,对重构信号进行时间同步平均(TSA)去噪以减少故障诊断模型的数据计算量.将Tent混沌映射、混合正弦余弦算法和Levy飞行策略用于改进北方苍鹰优化(NGO)算法,得到一种新的INGO算法.同时,引入余弦因子以平衡正弦余弦算法的全局和局部开发能力.最后,利用INGO算法对HKELM进行优化,用以提高HKELM模型的故障诊断准确率.将所提方法应用于两个案例对模型进行检验,实验结果表明,本文所提方法具有可行性和优越性. 展开更多
关键词 混合核极限学习机 改进北方苍鹰优化算法 时变滤波经验模态分解 故障诊断
在线阅读 下载PDF
基于改进麻雀搜索算法优化核极限学习机的弹丸气动参数辨识 被引量:1
19
作者 高展鹏 易文俊 《电子测量与仪器学报》 北大核心 2025年第2期72-82,共11页
弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组... 弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组合模型来辨识弹丸的气动参数,为充分挖掘SSA算法性能,提高辨识精确度,将对SSA算法的初始化策略、收敛因子和加入者的位置更新策略进行改进,采用CEC2022测试函数对改进后的麻雀搜索算法(ISSA)的改进措施的有效性进行验证,并采用ISSA优化KELM的核参数和正则化系数,提出ISSA-KELM辨识模型。研究结果表明,直接采用极限学习机(ELM)算法的辨识精确度最低,无法描述非线性区域弹丸的气动参数特征,通过在ELM算法中引入核函数提出KELM方法可以将辨识精确度提高1~4个量级,KELM和SSA-KELM等模型在非线性区域的辨识结果与真实值还有一定的差距,而采用ISSA-KELM模型的辨识结果最为精确,相比较基本的ELM算法辨识结果提高约4~5个量级,可以准确获取弹丸的气动参数,本研究为精确飞行轨迹预测和导弹性能优化提供了可靠的技术支持。 展开更多
关键词 弹丸 麻雀搜索算法 核极限学习机 气动参数辨识 非线性
在线阅读 下载PDF
多策略改进DBO算法与KELM的变压器故障辨识 被引量:1
20
作者 谭贵生 赵波 +2 位作者 张桂莲 刘丹丹 石宜金 《电力系统保护与控制》 北大核心 2025年第14期111-122,共12页
针对油浸式变压器故障诊断中因样本存在冗余特征,导致故障诊断精度低的问题,提出一种新的多策略改进蜣螂算法(multi-strategy improved dung beetle optimizer,MSIDBO)优化核极限学习机(kernel extreme learning machine,KELM)的变压器... 针对油浸式变压器故障诊断中因样本存在冗余特征,导致故障诊断精度低的问题,提出一种新的多策略改进蜣螂算法(multi-strategy improved dung beetle optimizer,MSIDBO)优化核极限学习机(kernel extreme learning machine,KELM)的变压器故障辨别模型。首先,利用随机森林(random forest,RF)与核主成分析法(kernel principal component analysis,KPCA)对变压器原始数据进行特征提取,合理降低特征量的维度。其次,引入改进的Circle混沌映射、变螺旋搜索机制、非线性控制因子、融合正余弦算法和融合多种群差分进化算法的变异策略对蜣螂算法(dung beetle optimizer,DBO)进行改进,提高全局搜索能力和收敛精度。最后,利用MSIDBO对KELM中的核参数和正则化参数进行优化,构建KPCA-MSIDBO-KELM的变压器故障诊断模型。实验表明,其诊断准确率为94.07%。与DBO-KELM、WOA-KELM、HHO-KELM、GWO-KELM和PSO-KELM故障模型进行对比分析,准确率分别提高了2.54%、3.39%、5.93%、7.63%和13.56%。相比其他模型,所提方法能够有效提高变压器故障诊断的准确率。 展开更多
关键词 变压器 故障诊断 多策略改进蜣螂算法 核极限学习机 核主成分分析
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部