期刊文献+
共找到49,756篇文章
< 1 2 250 >
每页显示 20 50 100
Unraveling the exceptional kinetics of Zn‖organic batteries in hydrated deep eutectic solution
1
作者 Duo Chen Yuanhang Wang +2 位作者 Tengyu Yao Hang Yang Laifa Shen 《Journal of Energy Chemistry》 2025年第2期570-577,I0012,共9页
Intuitively,the solvation structure featuring stronger interacted sheath in deep eutectic solution(DES)electrolyte would result in sluggish interfacial charge transfer and intense polarization,which obstructs its prac... Intuitively,the solvation structure featuring stronger interacted sheath in deep eutectic solution(DES)electrolyte would result in sluggish interfacial charge transfer and intense polarization,which obstructs its practical application in emerging Zn based batteries.Unexpectedly,here we discover a Zn‖organic battery with exceptional kinetics properties enabled by a hydrated DES electrolyte,which can render higher discharge capacity,smaller voltage polarization,and faster kinetics of charge transfer in comparison with conventional aqueous 3 M ZnCl_(2)electrolyte,though its viscosity is two orders of magnitude higher than the latter.The improved kinetics of charge transfer and ion diffusion is demonstrated to originate from the local electron structure regulation of cathode in hydrated DES electrolyte.Furthermore,the DES electrolyte has also been shown to restrict parasitic reaction associated with active water by preferential urea-molecular adsorption on Zn surface and stronger water trapping in solvation structure,giving rise to long-term stable dendrite-free Zn plating/stripping.This work provides a new rationale for understanding electrochemical behaviors of organic cathodes in DES electrolyte,which is conducive to the development of high-performance Zn‖organic batteries. 展开更多
关键词 Zn-based battery deep eutectic KINETICS Dendrite-free
在线阅读 下载PDF
Sparse-view phase-contrast and attenuation-based CT reconstruction utilizing model-driven deep learning
2
作者 Xia-Yu Tao Qi-Si Lin +3 位作者 Zhao Wu Yong Guan Yang-Chao Tian Gang Liu 《Nuclear Science and Techniques》 2025年第4期59-71,共13页
Grating-based X-ray phase-contrast imaging enhances the contrast of imaged objects,particularly soft tissues.However,the radiation dose in computed tomography(CT)is generally excessive owing to the complex collection ... Grating-based X-ray phase-contrast imaging enhances the contrast of imaged objects,particularly soft tissues.However,the radiation dose in computed tomography(CT)is generally excessive owing to the complex collection scheme.Sparse-view CT collection reduces the radiation dose,but with reduced resolution and reconstructed artifacts particularly in analytical reconstruction methods.Recently,deep learning has been employed in sparse-view CT reconstruction and achieved stateof-the-art results.Nevertheless,its low generalization performance and requirement for abundant training datasets have hindered the practical application of deep learning in phase-contrast CT.In this study,a CT model was used to generate a substantial number of simulated training datasets,thereby circumventing the need for experimental datasets.By training a network with simulated training datasets,the proposed method achieves high generalization performance in attenuationbased CT and phase-contrast CT,despite the lack of sufficient experimental datasets.In experiments utilizing only half of the CT data,our proposed method obtained an image quality comparable to that of the filtered back-projection algorithm with full-view projection.The proposed method simultaneously addresses two challenges in phase-contrast three-dimensional imaging,namely the lack of experimental datasets and the high exposure dose,through model-driven deep learning.This method significantly accelerates the practical application of phase-contrast CT. 展开更多
关键词 Sparse-view CT Phase-contrast CT Attenuation-based CT deep learning network Frequency loss function
在线阅读 下载PDF
Combining deep reinforcement learning with heuristics to solve the traveling salesman problem
3
作者 Li Hong Yu Liu +1 位作者 Mengqiao Xu Wenhui Deng 《Chinese Physics B》 2025年第1期96-106,共11页
Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs... Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs.However,methods that focus on learning improvement heuristics to iteratively refine solutions remain insufficient.Traditional improvement heuristics are guided by a manually designed search strategy and may only achieve limited improvements.This paper proposes a novel framework for learning improvement heuristics,which automatically discovers better improvement policies for heuristics to iteratively solve the TSP.Our framework first designs a new architecture based on a transformer model to make the policy network parameterized,which introduces an action-dropout layer to prevent action selection from overfitting.It then proposes a deep reinforcement learning approach integrating a simulated annealing mechanism(named RL-SA)to learn the pairwise selected policy,aiming to improve the 2-opt algorithm's performance.The RL-SA leverages the whale optimization algorithm to generate initial solutions for better sampling efficiency and uses the Gaussian perturbation strategy to tackle the sparse reward problem of reinforcement learning.The experiment results show that the proposed approach is significantly superior to the state-of-the-art learning-based methods,and further reduces the gap between learning-based methods and highly optimized solvers in the benchmark datasets.Moreover,our pre-trained model M can be applied to guide the SA algorithm(named M-SA(ours)),which performs better than existing deep models in small-,medium-,and large-scale TSPLIB datasets.Additionally,the M-SA(ours)achieves excellent generalization performance in a real-world dataset on global liner shipping routes,with the optimization percentages in distance reduction ranging from3.52%to 17.99%. 展开更多
关键词 traveling salesman problem deep reinforcement learning simulated annealing algorithm transformer model whale optimization algorithm
在线阅读 下载PDF
基于改进DeepLabV3+网络的光伏组件热斑故障识别及状态量化评估方法研究
4
作者 陈雷 刘波 +1 位作者 孙凯 赵健 《太阳能学报》 北大核心 2025年第3期445-453,共9页
针对光伏组件热斑的精确定位和量化评估,提出一种基于改进DeepLabV3+网络与热斑像素比重模型相融合的光伏组件状态量化评估方法,旨在实现不同热斑状态的量化评估。首先,基于获取的红外热斑图像集,提出在DeepLabV3+主干网络中引入迁移学... 针对光伏组件热斑的精确定位和量化评估,提出一种基于改进DeepLabV3+网络与热斑像素比重模型相融合的光伏组件状态量化评估方法,旨在实现不同热斑状态的量化评估。首先,基于获取的红外热斑图像集,提出在DeepLabV3+主干网络中引入迁移学习网络(EfficientNetB7)来提高热斑形状特征提取能力,进而实现热斑的像素级语义分割;其次,利用Canny算法对分割的热斑图像进行像素级轮廓界定,并利用格林积分计算其像素比重;最后,通过构建状态评估模型实现对光伏组件热斑状态的量化评估。现场试验表明,与常见的语义分割方法(DeepLabV3、FCN、U-net、Linknet、SegNet)相比,该文所提方法在像素准确率和平均交并比方面分别达到98.33%和91.43%,具有较好的热斑分割效果。此外,所提状态评估方法可实现对光伏组件热斑大小的准确量化评估。 展开更多
关键词 光伏组件 热斑 图像分割 状态评估 深度学习 红外图像
在线阅读 下载PDF
Adsorption damage mechanism and control of fracturing fluid thickener in deep coal rock
5
作者 YOU Lijun QIAN Rui +1 位作者 KANG Yili WANG Yijun 《Petroleum Exploration and Development》 2025年第1期208-218,共11页
Static adsorption and dynamic damage experiments were carried out on typical 8#deep coal rock of the Carboniferous Benxi Formation in the Ordos Basin,NW China,to evaluate the adsorption capacity of hydroxypropyl guar ... Static adsorption and dynamic damage experiments were carried out on typical 8#deep coal rock of the Carboniferous Benxi Formation in the Ordos Basin,NW China,to evaluate the adsorption capacity of hydroxypropyl guar gum and polyacrylamide as fracturing fluid thickeners on deep coal rock surface and the permeability damage caused by adsorption.The adsorption morphology of the thickener was quantitatively characterized by atomic force microscopy,and the main controlling factors of the thickener adsorption were analyzed.Meanwhile,the adsorption mechanism of the thickener was revealed by Zeta potential,Fourier infrared spectroscopy and X-ray photoelectron spectroscopy.The results show that the adsorption capacity of hydroxypropyl guar gum on deep coal surface is 3.86 mg/g,and the permeability of coal rock after adsorption decreases by 35.24%–37.01%.The adsorption capacity of polyacrylamide is 3.29 mg/g,and the permeability of coal rock after adsorption decreases by 14.31%–21.93%.The thickness of the thickener adsorption layer is positively correlated with the mass fraction of thickener and negatively correlated with temperature,and a decrease in pH will reduce the thickness of the hydroxypropyl guar gum adsorption layer and make the distribution frequency of the thickness of polyacrylamide adsorption layer more concentrated.Functional group condensation and intermolecular force are chemical and physical forces for adsorbing fracturing fluid thickener in deep coal rock.Optimization of thickener mass fraction,chemical modification of thickener molecular,oxidative thermal degradation of polymer and addition of desorption agent can reduce the potential damages on micro-nano pores and cracks in coal rock. 展开更多
关键词 deep coal rock gas fracturing fluid THICKENER adsorption morphology adsorption mechanism control factor permeability damage damage prevention
在线阅读 下载PDF
基于DeepLabV3+结合无人机影像进行沉水植物盖度调查
6
作者 王飞 普运伟 +3 位作者 郭艳英 刘昱岑 李亚华 胡翀 《城市勘测》 2025年第1期14-20,共7页
为解决传统沉水植物盖度调查中采用人工实地调查效率低的问题,基于DeepLabV3+结合高分辨率无人机影像对滇池外海的沉水植物进行识别分割,并结合人工目视解译和现场调查对模型分割结果进行精度评价,在此基础上统计得到滇池外海沉水植物... 为解决传统沉水植物盖度调查中采用人工实地调查效率低的问题,基于DeepLabV3+结合高分辨率无人机影像对滇池外海的沉水植物进行识别分割,并结合人工目视解译和现场调查对模型分割结果进行精度评价,在此基础上统计得到滇池外海沉水植物的面积和盖度。实验结果表明,该方法能够快速、准确地获取目标区域内的沉水植物面积和盖度,其准确率达95.2%,可显著提高沉水植物盖度调查效率,可为滇池的保护治理提供重要支持。 展开更多
关键词 深度学习 deepLabV3+ 沉水植物 盖度 无人机影像 滇池
在线阅读 下载PDF
基于YOLOv5和改进DeeplabV3+的青藏高原植被提取算法
7
作者 闫储淇 黄建强 《草业学报》 北大核心 2025年第1期41-54,共14页
青藏高原的植被覆盖度是生态研究和环境监测的重要指标。传统的植被覆盖度检测方法在地形简单且植被分布集中的区域效果较好,但在复杂地形下由于成本高、调查范围受限、耗时长等问题,导致植被提取精度受限。近年来,计算机视觉和深度学... 青藏高原的植被覆盖度是生态研究和环境监测的重要指标。传统的植被覆盖度检测方法在地形简单且植被分布集中的区域效果较好,但在复杂地形下由于成本高、调查范围受限、耗时长等问题,导致植被提取精度受限。近年来,计算机视觉和深度学习技术的飞速发展为青藏高原复杂地形下的植被精准提取开辟了新的可能性。本研究提出一种结合YOLOv5和改进DeeplabV3+的双阶段植被提取算法。算法引入基于YOLOv5的植被目标检测模型,以减少背景对第二阶段植被分割任务的干扰;设计新型的DeeplabV3+语义分割模型,以实现精准的植被分割提取。改进的模型引入了轻量级主干网络MobileNetV2、优化了ASPP模块膨胀卷积参数,并集成EMA和CloAttention注意力机制。在青藏高原无人机航拍数据集上的实验结果显示,本算法在交并比(IoU)和像素准确率(PA)上分别达到了90.40%和96.32%,显著超过现有技术,且大幅降低了模型参数。本算法在多种环境条件下均展示了高精度的植被提取能力,可以为青藏高原植被覆盖度的快速、精准测定提供有效的技术支持。 展开更多
关键词 青藏高原 植被提取 深度学习 YOLOv5 deeplabV3+
在线阅读 下载PDF
一种改进DeepLabV3+的SAR图像建筑分割方法
8
作者 张文武 龙伟军 +1 位作者 陈虹廷 陈逸飞 《无线电工程》 2025年第3期475-483,共9页
合成孔径雷达(Synthetic Aperture Radar,SAR)图像相对于光学图像具有一定的穿透能力和全天候连续监测能力等优势,适合更多场景的应用。建筑分割图像对于城市规划、环境监测以及灾害评估等领域具有重要作用。针对SAR图像中建筑分割算法... 合成孔径雷达(Synthetic Aperture Radar,SAR)图像相对于光学图像具有一定的穿透能力和全天候连续监测能力等优势,适合更多场景的应用。建筑分割图像对于城市规划、环境监测以及灾害评估等领域具有重要作用。针对SAR图像中建筑分割算法特征提取能力不足、分割精度较低的问题,提出一种改进DeepLabV3+的语义分割模型——CFNet。CFNet将传统DeepLabV3+的主干网络Xception修改为MobileNetV2主干网络,以减少模型总参数量并提升运算速度;提出了一种新的结合通道注意力机制和空间注意力机制的交叉注意力机制,以提取浅层和深层特征;改进了网络中提取的浅层和深层特征的融合方式,分别将浅层和深层特征作为辅助引入进行二者的融合,最大程度地利用了网络中的浅层与深层特征,提升了算法的特征提取能力。在SARBuD 1.0数据集上的实验结果表明,CFNet的平均交并比(mean Intersection over Union,mIoU)为80.69%,精确率(Precision)为87.99%,召回率(Recall)为92.05%,F1因子为89.86%,相较于其他多种分割网络,CFNet在SAR图像建筑分割精度上有一定提升。 展开更多
关键词 deepLabV3+模型 合成孔径雷达图像 深度学习 语义分割 特征融合
在线阅读 下载PDF
基于Deep Forest算法的对虾急性肝胰腺坏死病(AHPND)预警数学模型构建
9
作者 王印庚 于永翔 +5 位作者 蔡欣欣 张正 王春元 廖梅杰 朱洪洋 李昊 《渔业科学进展》 CSCD 北大核心 2024年第3期171-181,共11页
为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据... 为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据标准化处理后分析病原、宿主与环境之间的相关性,对候选预警因子进行筛选,基于Python语言编程结合Deep Forest、Light GBM、XGBoost算法进行数据建模和预测性能评判,仿真环境为Python2.7,以预警因子指标作为输入样本(即警兆),以对虾是否发病指标作为输出结果(即警情),根据输入样本和输出结果各自建立输入数据矩阵和目标数据矩阵,利用原始数据矩阵对输入样本进行初始化,结合函数方程进行拟合,拟合的源代码能利用已知环境、病原及对虾免疫指标数据对目标警情进行预测。最终建立了基于Deep Forest算法的虾体(肝胰腺内)细菌总数、虾体弧菌(Vibrio)占比、水体细菌总数和盐度的4维向量预警预报模型,准确率达89.00%。本研究将人工智能算法应用到对虾AHPND发生的预测预报,相关研究结果为对虾AHPND疾病预警预报建立了预警数学模型,并为对虾健康养殖和疾病防控提供了技术支撑和有力保障。 展开更多
关键词 对虾 急性肝胰腺坏死病 预警数学模型 deep Forest算法 PYTHON语言
在线阅读 下载PDF
基于改进DeepLabV3+的指针式仪表智能识别方法设计 被引量:1
10
作者 吕新荣 来宝 周珺 《电子设计工程》 2024年第23期145-149,154,共6页
针对现有仪表识别方法存在的诸如对表盘差异敏感、环境干扰严重以及图像质量依赖性强导致识别准确率不高的问题,提出了一种基于改进DeepLabV3+的指针式仪表智能识别算法。通过引入GhostNetV2作为主干网络进行特征提取,并添加注意力模块C... 针对现有仪表识别方法存在的诸如对表盘差异敏感、环境干扰严重以及图像质量依赖性强导致识别准确率不高的问题,提出了一种基于改进DeepLabV3+的指针式仪表智能识别算法。通过引入GhostNetV2作为主干网络进行特征提取,并添加注意力模块CBAM,有效提升了模型在仪表语义分割任务的精度;同时设计了多类仪表的示值识别算法,实现了对多类仪表的指针读数。通过在构建的指针式仪表识别数据集上对算法进行评估,结果表明,仪表智能识别算法能够适应多种仪表类型和复杂环境,识别准确率最高达99.67%,且改进的DeepLabV3+模型平均IoU达79.8%,性能优于原始模型,能够满足实际工业应用需求。 展开更多
关键词 指针式仪表 注意力机制 深度学习 自动识别
在线阅读 下载PDF
基于DeepLabv3+的船体结构腐蚀检测方法
11
作者 向林浩 方昊昱 +2 位作者 周健 张瑜 李位星 《船海工程》 北大核心 2024年第2期30-34,共5页
利用图像识别方法对无人机、机器人所采集的实时图像开展船体结构腐蚀检测,可有效提高检验检测效率和数字化、智能化水平,具有极大的应用价值和潜力,将改变传统的船体结构检验检测方式。提出一种基于DeepLabv3+的船体结构腐蚀检测模型,... 利用图像识别方法对无人机、机器人所采集的实时图像开展船体结构腐蚀检测,可有效提高检验检测效率和数字化、智能化水平,具有极大的应用价值和潜力,将改变传统的船体结构检验检测方式。提出一种基于DeepLabv3+的船体结构腐蚀检测模型,通过收集图像样本并进行三种腐蚀类别的分割标注,基于DeepLabv3+语义分割模型进行网络的训练,预测图片中腐蚀的像素点类别和区域,模型在测试集的精准率达到52.92%,证明了使用DeepLabv3+检测船体腐蚀缺陷的可行性。 展开更多
关键词 船体结构 腐蚀检测 深度学习 deepLabv3+
在线阅读 下载PDF
基于注意力机制改进的DeepLabV3+遥感图像分割算法 被引量:1
12
作者 侯艳丽 盖锡林 《微电子学与计算机》 2024年第8期53-61,共9页
DeepLabV3+分割算法具有高效的编解码结构,常用在图像分割任务中。针对DeepLabV3+高分辨率遥感图像语义分割中存在的分割目标边缘不精确和孔洞缺陷问题,提出了一种基于注意力机制改进的DeepLabV3+遥感图像分割算法。构建ECBA(Efficient ... DeepLabV3+分割算法具有高效的编解码结构,常用在图像分割任务中。针对DeepLabV3+高分辨率遥感图像语义分割中存在的分割目标边缘不精确和孔洞缺陷问题,提出了一种基于注意力机制改进的DeepLabV3+遥感图像分割算法。构建ECBA(Efficient Convolutional Block Attention Module)注意力机制,将ECBA添加至DeepLabV3+主干网络Xception,增强其特征提取能力,得到注意力加权的高层特征。同时,将ECBA添加至编码器和解码器的连接支路,得到注意力加权后的低层特征。解码器将两种特征进行特征融合,以增强网络对不同分割目标的边缘以及同一目标内部的感知。实验结果表明,改进后的算法在ISPRS Potsdam数据集上的平均交并比(mean Intersection over Union,mIoU)和F1指数分别达到了79.80%和75.88%,比DeepLabV3+算法提高了11.06%和6.32%。 展开更多
关键词 遥感图像分割 deepLabV3+ 注意力机制 神经网络 深度学习
在线阅读 下载PDF
An Insight of the First Community Infected COVID-19 Patient in Beijing by Imported Case: Role of Deep Learning-Assisted CT Diagnosis 被引量:1
13
作者 Dasheng Li Dawei Wang +4 位作者 Nana Wang Haiwang Xu He Huang Jianping Dong Chen Xia 《Chinese Medical Sciences Journal》 CAS CSCD 2021年第1期66-71,共6页
In the era of coronavirus disease 2019(COVID-19)pandemic,imported COVID-19 cases pose great challenges to many countries.Chest CT examination is considered to be complementary to nucleic acid test for COVID-19 detecti... In the era of coronavirus disease 2019(COVID-19)pandemic,imported COVID-19 cases pose great challenges to many countries.Chest CT examination is considered to be complementary to nucleic acid test for COVID-19 detection and diagnosis.Wie report the first community infected COVID-19 patient by an imported case in Beijing,which manifested as nodular lesions on chest CT imaging at the early stage.Deep Learning(DL)-based diagnostic systems quantitatively monitored the progress of pulmonary lesions in 6 days and timely made alert for suspected pneumonia,so that prompt medical isolation was taken.The patient was confirmed as COVID-19 case after nucleic acid test,for which the community transmission was prevented timely.The roles of DL-assisted diagnosis in helping radiologists screening suspected COVID cases were discussed. 展开更多
关键词 coronavirus disease 2019 imported cases computed tomography deep learning diagnosis
在线阅读 下载PDF
基于YOLO+DeepSort的出租车检测及交通流影响研究
14
作者 徐慧智 陈爽 +2 位作者 刘嘉玲 蒋时森 陈祎楠 《大连交通大学学报》 CAS 2024年第5期33-41,共9页
为了解决出租车与黄色小型车辆外观相似、不易区分的问题,以哈尔滨市出租车为研究对象,以YOLOv5+DeepSort为基本框架,新增交通量与速度检测模块。基于视频采集数据,建立出租车目标检测数据集与出租车图像数据集,采用深度学习方法构建车... 为了解决出租车与黄色小型车辆外观相似、不易区分的问题,以哈尔滨市出租车为研究对象,以YOLOv5+DeepSort为基本框架,新增交通量与速度检测模块。基于视频采集数据,建立出租车目标检测数据集与出租车图像数据集,采用深度学习方法构建车型识别模型。建立了考虑出租车比例因素的速度影响模型,分析了畅行状态下出租车运行特征。结果表明:结合深度学习的出租车车型识别精确率高达0.88;畅行状态下出租车平均速度比其他车型高5~15 km/h;出租车比例对全局平均速度及速度-流量曲线增长趋势存在一定影响;考虑出租车比例的速度影响模型在继承传统BPR模型优点的同时,精度提升了20%左右。 展开更多
关键词 交通运输规划与管理 深度学习 出租车 运行特征 车型识别
在线阅读 下载PDF
Structural failure mechanism and strengthening method of fracture plugging zone for lost circulation control in deep naturally fractured reservoirs 被引量:3
15
作者 XU Chengyuan YAN Xiaopeng +2 位作者 KANG Yili YOU Lijun ZHANG Jingyi 《Petroleum Exploration and Development》 2020年第2期430-440,共11页
Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failu... Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failure pattern of plugging zone is developed to reveal the plugging zone failure mechanisms in deep, high temperature, high pressure, and high in-situ stress environment. Based on the fracture plugging zone strength model, key performance parameters are determined for the optimal selection of loss control material(LCM). Laboratory fracture plugging experiments with new LCM are carried out to evaluate the effect of the key performance parameters of LCM on fracture plugging quality. LCM selection strategy for fractured reservoirs is developed. The results show that the force chain formed by LCMs determines the pressure stabilization of macro-scale fracture plugging zone. Friction failure and shear failure are the two major failure patterns of fracture plugging zone. The strength of force chain depends on the performance of micro-scale LCM, and the LCM key performance parameters include particle size distribution, fiber aspect ratio, friction coefficient, compressive strength, soluble ability and high temperature resistance. Results of lab experiments and field test show that lost circulation control quality can be effectively improved with the optimal material selection based on the extracted key performance parameters of LCMs. 展开更多
关键词 deep layer fractured reservoir lost circulation fracture plugging zone multi-scale structure strength and stability loss control material
在线阅读 下载PDF
Enrichment and exploration of deep lacustrine shale oil in the first member of Cretaceous Qingshankou Formation, southern Songliao Basin, NE China 被引量:2
16
作者 ZHANG Junfeng XU Xingyou +4 位作者 BAI Jing LIU Weibin CHEN Shan LIU Chang LI Yaohua 《Petroleum Exploration and Development》 2020年第4期683-698,共16页
Pure shales in the first member of Qingshankou Formation(simplified as Qing 1 Member)in the southern Songliao Basin,i.e.,the semi-deep and deep lacustrine shales,are characterized by a high content of clay minerals an... Pure shales in the first member of Qingshankou Formation(simplified as Qing 1 Member)in the southern Songliao Basin,i.e.,the semi-deep and deep lacustrine shales,are characterized by a high content of clay minerals and poor hydrocarbon mobility,making the development of shale oil difficult.According to the drilling and testing results,the shale of Qing 1 Member can be classified into 3 lithofacies,i.e.,bedded argillaceous shale,laminated diamictite shale,and interbedded felsic shale.The TOC and brittle minerals control the enrichment of shale oil,of them,TOC controls the total oil content,in other words,the total oil content increases with the increase of TOC;while the laminae made up of brittle minerals contain a large number of bigger intergranular pores which are favorable enrichment space for movable shale oil.In consideration of the origins of the 3 lithofacies,two shale oil enrichment models are classified,i.e.,the deep lacustrine high-TOC bedded argillaceous shale(Model-I)and the semi-deep lacustrine moderate-high-TOC laminated diamictite shale(Model-II).In the Model-I,the shale is characterized by high hydrocarbon generation ability,high total oil content,abundant horizontal bedding fractures,and vertical and high angle fractures locally;the complex fracture network formed by horizontal bedding fractures and vertical fractures improve the storage capacity and permeability of the shale reservoir,increase the enrichment space for movable oil.In the Model-II,the shale is characterized by good hydrocarbon generation ability and fairly high total oil content,and as the brittle laminae contain large intergranular pores,the shale has a higher movable oil content.Based on the two models,shale oil sweet-spot areas of 2880 km2 in the southern Songliao Basin are favorable for further exploration.Aimed at the difficulties in reservoir fracturing of the lacustrine shale with a high content of clay minerals,the composite fracturing technology with supercritical carbon dioxide was used in the shale oil reservoir for the first time,realizing large-scale volume fracturing in shale with a high content of clay minerals and strong heterogeneity,marking a breakthrough of oil exploration in continental shale with a high content of clay minerals in China. 展开更多
关键词 shale oil Songliao Basin CRETACEOUS first Member of Qingshankou Formation semi-deep to deep lacustrine lithofacies feature enrichment model
在线阅读 下载PDF
A Deep Learning Based Broadcast Approach for Image Semantic Communication over Fading Channels 被引量:2
17
作者 Ma Kangning Shi Yuxuan +1 位作者 Shao Shuo Tao Meixia 《China Communications》 SCIE CSCD 2024年第7期78-94,共17页
We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adapt... We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block. 展开更多
关键词 broadcast approach deep learning fading channels semantic communication
在线阅读 下载PDF
Well-defined high entropy-metal nanoparticles:Detection of the multi-element particles by deep learning 被引量:1
18
作者 Manar Alnaasan Wail Al Zoubi +3 位作者 Salh Alhammadi Jee-Hyun Kang Sungho Kim Young Gun Ko 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期262-273,共12页
Characterizing and control the chemical compositions of multi-element particles as single metal nanoparticles(mNPs) on the surfaces of catalytic metal oxide supports is challenging.This can be attributed to the hetero... Characterizing and control the chemical compositions of multi-element particles as single metal nanoparticles(mNPs) on the surfaces of catalytic metal oxide supports is challenging.This can be attributed to the heterogeneity and large size at the nanoscale,the poorly defined catalyst nanostructure,and thermodynamic immiscibility of the strongly repelling metallic elements.To address these challenges,an ultrasonic-assisted coincident electro-oxidation-reduction-precipitation(U-SEO-P) is presented to fabricate ultra-stable PtRuAgCoCuP NPs,which produces numerous active intermediates and induces strong metal-support interactions.To sort the active high-entropy mNPs,individual NPs are described on the support surface and the role of deep learning in understanding/predicting the features of PtRuAgCoCu@TiO_(x) catalysts is explained.Notably,this deep learning approach required minimal to no human input.The as-prepared PtRuAgCoCu@TiO_(x) catalysts can be used to catalyze various important chemical reactions,such as a high reduction conversion(100% in 30 s),with no loss of catalytic activity even after 20 cycles of nitroarene and ketone/aldehyde,which is several times higher than commercial Pt@TiO_(x) owing to individual PtRuAgCoCuP NPs on TiO_(x) surface.In this study,we present the "Totally Defined Catalysis" concept,which has enormous potential for the advancement of high-activity catalysts in the reduction of organic compounds. 展开更多
关键词 Metal nanoparticles deep learning CATALYST REDUCTION
在线阅读 下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs 被引量:3
19
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture deep and ultra-deep reservoir Fracture conductivity Fracturing fluid Hydraulic fracturing Reservoir damage
在线阅读 下载PDF
Hydrocarbon accumulation characteristics in basement reservoirs and exploration targets of deep basement reservoirs in onshore China 被引量:2
20
作者 WANG Zecheng JIANG Qingchun +10 位作者 WANG Jufeng LONG Guohui CHENG Honggang SHI Yizuo SUN Qisen JIANG Hua ABULIMITI Yiming CAO Zhenglin XU Yang LU Jiamin HUANG Linjun 《Petroleum Exploration and Development》 SCIE 2024年第1期31-43,共13页
Based on the global basement reservoir database and the dissection of basement reservoirs in China,the characteristics of hydrocarbon accumulation in basement reservoirs are analyzed,and the favorable conditions for h... Based on the global basement reservoir database and the dissection of basement reservoirs in China,the characteristics of hydrocarbon accumulation in basement reservoirs are analyzed,and the favorable conditions for hydrocarbon accumulation in deep basement reservoirs are investigated to highlight the exploration targets.The discovered basement reservoirs worldwide are mainly buried in the Archean and Precambrian granitic and metamorphic formations with depths less than 4500 m,and the relatively large reservoirs have been found in rift,back-arc and foreland basins in tectonic active zones of the Meso-Cenozoic plates.The hydrocarbon accumulation in basement reservoirs exhibits the characteristics in three aspects.First,the porous-fractured reservoirs with low porosity and ultra-low permeability are dominant,where extensive hydrocarbon accumulation occurred during the weathering denudation and later tectonic reworking of the basin basement.High resistance to compaction allows the physical properties of these highly heterogeneous reservoirs to be independent of the buried depth.Second,the hydrocarbons were sourced from the formations outside the basement.The source-reservoir assemblages are divided into contacted source rock-basement and separated source rock-basement patterns.Third,the abnormal high pressure in the source rock and the normal–low pressure in the basement reservoirs cause a large pressure difference between the source rock and the reservoirs,which is conducive to the pumping effect of hydrocarbons in the deep basement.The deep basement prospects are mainly evaluated by the factors such as tectonic activity of basement,source-reservoir combination,development of large deep faults(especially strike-slip faults),and regional seals.The Precambrian crystalline basements at the margin of the intracontinental rifts in cratonic basins,as well as the Paleozoic folded basements and the Meso-Cenozoic fault-block basements adjacent to the hydrocarbon generation depressions,have favorable conditions for hydrocarbon accumulation,and thus they are considered as the main targets for future exploration of deep basement reservoirs. 展开更多
关键词 basement reservoir granite reservoir source-reservoir assemblage pumping effect strike-slip fault deep basement reservoir
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部