期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于个性化联邦学习的异构船舶航行油耗预测 被引量:2
1
作者 韩沛秀 孙卓 +1 位作者 刘忠波 闫椿昕 《计算机集成制造系统》 北大核心 2025年第1期182-196,共15页
船舶航行油耗的精准预测,对保护海洋环境、减少航运业运营成本起关键作用,但航运业船舶的数据私密性、及异构船舶的数据异质性,导致常规机器学习方法的预测效果有限。为此,提出一种基于类别型特征的梯度提升(CatBoost)联合个性化联邦学... 船舶航行油耗的精准预测,对保护海洋环境、减少航运业运营成本起关键作用,但航运业船舶的数据私密性、及异构船舶的数据异质性,导致常规机器学习方法的预测效果有限。为此,提出一种基于类别型特征的梯度提升(CatBoost)联合个性化联邦学习(PFL)预测方法。首先,对本地不同数据源的船舶信息数据及海况数据进行数据融合和清洗过滤,以提高输入数据质量;其次,对本地融合数据用CatBoost进行特征选取,以去除冗余数据;随后,引入带个性化层的联邦学习(FedPer)框架,建立异构船舶航行油耗预测模型,以保证异构船舶的数据私密性;进一步,对基本层权重矩阵采用联邦平均算法(FedAvg)聚合参数并反馈,对个性化层权重矩阵由本地客户端采用深度前馈神经网络(DFNN)进行训练优化,以消除数据异质性的影响,提高预测精度。最后,结合实际异构船舶航行油耗算例进行对比实验,结果表明,相比于其他模型,CatBoost联合个性化联邦学习预测方法的预测精度更高,对降低异构船舶航行油耗具有一定的指导意义。 展开更多
关键词 异构船舶航行油耗预测 个性化联邦学习 基于类别型特征的梯度提升 联邦平均算法 深度前馈神经网络
在线阅读 下载PDF
基于地震属性和深度前馈神经网络的天然气水合物饱和度预测 被引量:2
2
作者 孟大江 陈玺 +2 位作者 路允乾 顾元 文鹏飞 《地质学报》 EI CAS CSCD 北大核心 2024年第9期2723-2736,共14页
天然气水合物饱和度是评价资源量的重要参数,常规的地震反演储层预测方法存在精度低、效率不高的问题,且无法解决地震数据与储层参数之间的非线性问题。随着人工智能技术的迅速发展,许多相关技术已经应用于地震勘探领域,其中人工神经网... 天然气水合物饱和度是评价资源量的重要参数,常规的地震反演储层预测方法存在精度低、效率不高的问题,且无法解决地震数据与储层参数之间的非线性问题。随着人工智能技术的迅速发展,许多相关技术已经应用于地震勘探领域,其中人工神经网络是人工智能的一个重要分支,其可以通过从大量的样本数据中不断学习,进而拟合复杂非线性函数来实现地下储层特征反演,有着很强的非线性映射和泛化能力。因此,本文在分析了常规线性公式以及岩石物理建模法优缺点的基础上,提出了基于地震属性和深度前馈神经网络预测水合物饱和度的方法。首先,基于测井和地震数据,通过筛选出不同类型与水合物饱和度相关性高的地震属性体,多维度构建样本标签数据;然后采用地震反演与端到端(地震数据-储层物性数据)反演相结合的策略,对全连接神经网络的隐藏层数、神经元数量、迭代次数等参数进行测试训练,最后将训练结果应用于地震数据体获得水合物饱和度预测结果。实际数据应用结果表明:基于地震属性和深度前馈神经网络预测的饱和度结果精度高、多解性低,与测井数据吻合好,证明该方法具有较好的应用价值;同时,预测的水合物空间分布特征表明研究区水合物成藏为平面游离气-水合物过渡成藏模式。 展开更多
关键词 天然气水合物 深度学习 饱和度 地震属性 深度前馈神经网络
在线阅读 下载PDF
前馈神经网络在预测连续泄漏系数中的应用 被引量:2
3
作者 何娟霞 黄丽文 +1 位作者 蒋文豪 段青山 《安全与环境学报》 CAS CSCD 北大核心 2024年第6期2179-2189,共11页
受泄漏孔几何参数、液位、液体物理特性及流动状态等因素影响,储罐连续泄漏系数难以直接采用流体力学建模求解。通过常压立式储罐连续泄漏试验获取数据样本,利用前馈神经网络(Feedforward Neural Network, FNN)算法构建连续泄漏系数(Cs... 受泄漏孔几何参数、液位、液体物理特性及流动状态等因素影响,储罐连续泄漏系数难以直接采用流体力学建模求解。通过常压立式储罐连续泄漏试验获取数据样本,利用前馈神经网络(Feedforward Neural Network, FNN)算法构建连续泄漏系数(Cs)与输入变量间的非线性关系,建立基于前馈神经网络算法的Cs预测模型。模型性能评估结果表明,模型的平均绝对误差(EMA)、解释方差分(SEV)及决定系数(R2)分别为0.015 4、0.949 2及0.948 2,表明模型预测性能良好。与相应连续泄漏试验值比较,预测Cs的总平均绝对偏差范围为5.28%~7.34%,质量流率平均偏差为4.60%~6.51%,连续泄漏量的平均偏差为0.84%~2.03%,模型预测结果优于采用泄漏经验常数的计算结果,证明该模型可有效预测连续泄漏期间Cs值及变化趋势。 展开更多
关键词 安全工程 储罐连续泄漏 泄漏系数 深度学习 前馈神经网络(FNN) 预测模型
在线阅读 下载PDF
燃煤机组过热汽温宽负荷模型前馈控制 被引量:4
4
作者 陈祎璠 曹越 司风琪 《动力工程学报》 CAS CSCD 北大核心 2024年第1期76-83,共8页
为了对燃煤机组过热汽温宽负荷运行时进行更精确地前馈控制,提出一种基于物理引导神经网络(PGNN)的预测前馈信号模型,并基于间隙度量法确定了多模型的负荷段分配。多模型间隙度量PGNN预测方法采用多模型间隙度量方法对负荷区段进行合理... 为了对燃煤机组过热汽温宽负荷运行时进行更精确地前馈控制,提出一种基于物理引导神经网络(PGNN)的预测前馈信号模型,并基于间隙度量法确定了多模型的负荷段分配。多模型间隙度量PGNN预测方法采用多模型间隙度量方法对负荷区段进行合理划分,结合过热器机理引导的长短期记忆神经网络,可以对强耦合、大惯性的过热汽温宽负荷前馈信号进行精准预测。结果表明:在机组宽负荷运行时,随着负荷降低控制对象的非线性程度逐渐增强,需要更多的模型数量,采用多模型间隙度量PGNN前馈控制方法可以在不同工况下采用与当前工况相适应的前馈信号,有效提升过热汽温的调节精度和稳定性。 展开更多
关键词 燃煤机组 过热汽温 前馈控制 深度神经网络 多模型间隙度量PGNN
在线阅读 下载PDF
基于SCG优化SSAE-FFNN的电能质量复合扰动深度特征提取与分类 被引量:4
5
作者 丁皓月 吕干云 +3 位作者 史明明 费骏韬 俞明 吴启宇 《电力工程技术》 北大核心 2024年第3期99-110,共12页
随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要... 随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要意义。为此,文中提出一种基于堆叠稀疏自编码器(stacked sparse auto encoder,SSAE)和前馈神经网络(feedforward neural network,FFNN)的电能质量复合扰动分类方法。首先,基于IEEE标准构建PQDs仿真模型。然后,建立基于SSAE-FFNN的PQDs分类模型,并引入缩放共轭梯度(scaled conjugate gradient,SCG)算法对模型进行优化,以提高梯度下降速度和网络训练效率。接着,为有效降低堆叠网络的重构损失同时提取出深度的低维特征,构建SSAE的逐层训练集及微调策略。最后,通过算例分析验证文中方法的分类效果、鲁棒性、泛化性和适用场景规模。结果表明,文中方法能够有效识别电能质量复合扰动,对含误差扰动和某地市电网的21组实测扰动录波数据也有较高的分类准确率。 展开更多
关键词 电能质量 复合扰动分类 堆叠稀疏自编码器(SSAE) 深度特征提取 缩放共轭梯度(SCG) 前馈神经网络(FFNN)
在线阅读 下载PDF
基于深度前馈神经网络的致密砂岩储层孔隙度预测 被引量:9
6
作者 李奎周 王团 +4 位作者 赵海波 唐晓花 田得光 郑绪瑭 高天宇 《大庆石油地质与开发》 CAS 北大核心 2023年第5期140-146,共7页
致密砂岩储层具有低孔低渗特点,由孔隙度变化引起的弹性参数和地震响应特征变化较弱,为解决常规的基于岩石物理关系线性映射孔隙度预测或者基于多属性融合的概率映射孔隙度预测方法难以表征孔隙度与地震属性间复杂非线性关系的问题,提... 致密砂岩储层具有低孔低渗特点,由孔隙度变化引起的弹性参数和地震响应特征变化较弱,为解决常规的基于岩石物理关系线性映射孔隙度预测或者基于多属性融合的概率映射孔隙度预测方法难以表征孔隙度与地震属性间复杂非线性关系的问题,提出了基于深度前馈神经网络的孔隙度预测方法。该方法首先以测井计算的有效孔隙度曲线作为训练目标,以井旁的地震数据属性和反演弹性属性作为训练特征构成训练样本;其次通过优选评价确定复杂结构深度前馈神经网络模型参数,建立井旁地震数据与孔隙度之间的非线性映射关系;最后将训练优良的深度网络模型应用到整个数据体,得到有效孔隙度预测成果,进而实现致密砂岩优质储层定量表征。松辽盆地北部三角洲前缘沉积的致密砂岩应用实例表明,基于深度学习的孔隙度预测结果与井资料吻合较好,相对误差为8.1%,较常规基于岩石物理关系的线性映射孔隙度预测方法误差减小8.2%;证明了该方法对致密砂岩储层孔隙度预测的有效性。研究成果可为井位部署及方案优化设计提供理论指导与技术参考。 展开更多
关键词 致密砂岩储层 孔隙度预测 深度前馈神经网络 非线性映射
在线阅读 下载PDF
大数据分析的无限深度神经网络方法 被引量:80
7
作者 张蕾 章毅 《计算机研究与发展》 EI CSCD 北大核心 2016年第1期68-79,共12页
深度神经网络(deep neural networks,DNNs)及其学习算法,作为成功的大数据分析方法,已为学术界和工业界所熟知.与传统方法相比,深度学习方法以数据驱动、能自动地从数据中提取特征(知识),对于分析非结构化、模式不明多变、跨领域的大数... 深度神经网络(deep neural networks,DNNs)及其学习算法,作为成功的大数据分析方法,已为学术界和工业界所熟知.与传统方法相比,深度学习方法以数据驱动、能自动地从数据中提取特征(知识),对于分析非结构化、模式不明多变、跨领域的大数据具有显著优势.目前,在大数据分析中使用的深度神经网络主要是前馈神经网络(feedforward neural networks,FNNs),这种网络擅长提取静态数据的相关关系,适用于基于分类的数据应用场景.但是受到自身结构本质的限制,它提取数据时序特征的能力有限.无限深度神经网络(infinite deep neural networks)是一种具有反馈连接的回复式神经网络(recurrent neural networks,RNNs),本质上是一个动力学系统,网络状态随时间演化是这种网络的本质属性,它耦合了"时间参数",更加适用于提取数据的时序特征,从而进行大数据的预测.将这种网络的反馈结构在时间维度展开,随着时间的运行,这种网络可以"无限深",故称之为无限深度神经网络.重点介绍这种网络的拓扑结构和若干学习算法及其在语音识别和图像理解领域的成功实例. 展开更多
关键词 深度神经网络 无限深度神经网络 前馈神经网络 回复式神经网络 大数据
在线阅读 下载PDF
DFSMN-T:结合强语言模型Transformer的中文语音识别 被引量:15
8
作者 胡章芳 蹇芳 +2 位作者 唐珊珊 明子平 姜博文 《计算机工程与应用》 CSCD 北大核心 2022年第9期187-194,共8页
自动语音识别系统由声学模型和语言模型两部分构成,但传统语言模型N-gram存在忽略词条语义相似性、参数过大等问题,限制了语音识别字符错误率的进一步降低。针对上述问题,提出一种新型的语音识别系统,以中文音节(拼音)作为中间字符,以... 自动语音识别系统由声学模型和语言模型两部分构成,但传统语言模型N-gram存在忽略词条语义相似性、参数过大等问题,限制了语音识别字符错误率的进一步降低。针对上述问题,提出一种新型的语音识别系统,以中文音节(拼音)作为中间字符,以深度前馈序列记忆神经网络DFSMN作为声学模型,执行语音转中文音节任务,进而将拼音转汉字理解成翻译任务,引入Transformer作为语言模型;同时提出一种减少Transformer计算复杂度的简易方法,在计算注意力权值时引入Hadamard矩阵进行滤波,对低于阈值的参数进行丢弃,使得模型解码速度更快。在Aishell-1、Thchs30等数据集上的实验表明,相较于DFSMN结合3-gram模型,基于DFSMN和改进Transformer的语音识别系统在最优模型上的字符错误率相对下降了3.2%,达到了11.8%的字符错误率;相较于BLSTM模型语音识别系统,其字符错误率相对下降了7.1%。 展开更多
关键词 语音识别 深度前馈序列记忆神经网络(DFSMN) TRANSFORMER 中文音节 HADAMARD矩阵
在线阅读 下载PDF
基于深度学习的桥梁非线性气动力模型研究 被引量:1
9
作者 张文明 冯丹典 葛耀君 《桥梁建设》 EI CSCD 北大核心 2023年第3期16-24,共9页
为准确模拟桥梁断面气动力的非线性特性和流体记忆效应,构建了基于深度学习的非线性气动力降阶模型。引入前馈神经网络(FNN)和长短时记忆(LSTM)网络2种深度学习框架,利用CFD强迫振动数值模拟获取非线性气动力数据,采用谐波叠加法合成强... 为准确模拟桥梁断面气动力的非线性特性和流体记忆效应,构建了基于深度学习的非线性气动力降阶模型。引入前馈神经网络(FNN)和长短时记忆(LSTM)网络2种深度学习框架,利用CFD强迫振动数值模拟获取非线性气动力数据,采用谐波叠加法合成强迫振动位移信号;结合2种框架的结构特征,以断面位移为输入、气动力为输出,针对性构建了用于网络训练、验证和测试的数据集。以某三塔悬索桥钢箱梁断面为例,分别建立基于FNN和基于LSTM网络的气动力降阶模型,并针对不同频率、自由度的强迫振动和自由振动等工况,评估对比了模型的性能。结果表明:2种降阶模型均可较好地模拟任意合理振动工况下断面非线性气动力,计算效率较数值模拟有极大提升,其中,基于LSTM网络的降阶模型具备更优的非线性气动力模拟性能。 展开更多
关键词 桥梁工程 非线性气动力 深度学习 前馈神经网络 长短时记忆网络 数值模拟
在线阅读 下载PDF
我们还需要前馈神经网络技术? 被引量:1
10
作者 王士同 钟富礼 蒋亦樟 《江南大学学报(自然科学版)》 CAS 2013年第6期631-636,共6页
定义了前馈核神经网络的体系结构。从实际应用的需求出发,所定义的网络涵盖了目前多数前馈神经网络。从理论上证明了该网络的批量学习过程实际上所表达的是一种核学习机,进而证明了网络的学习仅需在最后一层实施即可,而在隐含层的参数... 定义了前馈核神经网络的体系结构。从实际应用的需求出发,所定义的网络涵盖了目前多数前馈神经网络。从理论上证明了该网络的批量学习过程实际上所表达的是一种核学习机,进而证明了网络的学习仅需在最后一层实施即可,而在隐含层的参数可任意赋值。因此,该结论事实上是现有LLM及ELM的拓广。同时,发现在逼近精度要求不是太高的情况下,目前的前馈神经网络学习技术因过于繁琐而没有必要,仅需对网络最后一层进行学习即可。而前馈神经网络技术目前最前沿的应用是解决大样本及深度知识表达问题。针对这两个热点问题,分别提出了大样本下的廉价学习策略和深度知识挖掘下的灵巧学习策略。在此,作者希望该文能引起广泛讨论甚至争论。 展开更多
关键词 前馈神经网路 核学习机 深度知识 深度学习
在线阅读 下载PDF
基于机构设计与深度学习的工业模糊图像智能调焦系统设计 被引量:5
11
作者 张飞雁 《电子测量技术》 2019年第12期17-20,共4页
为了解决工厂现场实际制造环境不稳定,导致工业相机采集图像清晰度效果欠佳,普遍存在离焦模糊的问题,分别从机械结构设备设计与计算机深度学习的角度出发,提出了基于机构设计与深度学习的工业模糊图像智能调焦系统。首先,有机组合工业... 为了解决工厂现场实际制造环境不稳定,导致工业相机采集图像清晰度效果欠佳,普遍存在离焦模糊的问题,分别从机械结构设备设计与计算机深度学习的角度出发,提出了基于机构设计与深度学习的工业模糊图像智能调焦系统。首先,有机组合工业相机、Z轴控制电机、计算机、USB串口线,构成设备系统机构设计,优化机械传动过程,完成工业模糊图像智能调焦系统的硬件平台。然后,基于包含清晰图像与模糊图像的大数据样本集,采用前馈人工神经网络,耦合激励函数计算Z轴升降数据,设计了模糊图像智能调焦算子,达到图像清晰化的目的。最后,基于OpenCV深度学习模块和Visual Studio平台,实现了工业模糊图像智能调焦系统。实验测试结果显示,与当前调焦算法相比,本算法拥有更高的稳定性和推广性。 展开更多
关键词 模糊图像 智能调焦 机构设计 前馈人工神经网络 深度学习 激励函数
在线阅读 下载PDF
TensorFlow中深度前馈网络优化研究及其轴承故障诊断应用 被引量:5
12
作者 梁昱 李彬彬 +1 位作者 陈志高 焦斌 《计算机应用与软件》 北大核心 2019年第10期175-182,共8页
目前在复杂系统的故障诊断中,故障特征与故障类型之间存在较强的非线性关系,且数据量较大,信号处理复杂,诊断效率不高,而深度学习在特征提取与模式识别方面显示出巨大潜力。针对此问题提出基于深度前馈网络的故障诊断模型,将其应用于复... 目前在复杂系统的故障诊断中,故障特征与故障类型之间存在较强的非线性关系,且数据量较大,信号处理复杂,诊断效率不高,而深度学习在特征提取与模式识别方面显示出巨大潜力。针对此问题提出基于深度前馈网络的故障诊断模型,将其应用于复杂的轴承故障诊断。该方法直接将原始信号作为模型的输入特征量,然后利用谷歌开源深度学习框架TensorFlow建模,通过相关参数设置、梯度算法优化、正则化处理对网络进行优化设计。构建上万的9种轴承故障类型样本,确保样本多样性,提高网络鲁棒性,最终优化后的模型诊断准确率为98.96%。将该方法与多种传统的机器学习诊断方法进行比较,结果表明该方法能更有效地进行轴承故障诊断,验证了模型的合理性和优越性。 展开更多
关键词 深度前馈网络 参数选取 优化算法 TensorFlow 轴承故障诊断
在线阅读 下载PDF
基于深度前馈神经网络的多因子人体表面积计算模型 被引量:2
13
作者 王雨露 李飞 +3 位作者 杨震 黄山 张罡 詹曙 《计算机工程与科学》 CSCD 北大核心 2023年第1期119-126,共8页
人体表面积(BSA)在临床医学上有着至关重要的作用,但现有BSA计算方法大多只使用身高和体重2个参数且采用匹配简单函数的方法来估计体表面积,临床上也认为现有的BSA计算方法误差较大。针对这些问题,提出一种BSA回归预测模型。该回归预测... 人体表面积(BSA)在临床医学上有着至关重要的作用,但现有BSA计算方法大多只使用身高和体重2个参数且采用匹配简单函数的方法来估计体表面积,临床上也认为现有的BSA计算方法误差较大。针对这些问题,提出一种BSA回归预测模型。该回归预测模型包含2个部分:首先,借助相关性和显著性分析选择相关性较高的体表面积影响因子;其次,利用人体数据训练深度前馈神经网络,构建回归模型。实验分别采取5-折交叉验证与测试集验证2种方法。首先,将深度前馈神经网络模型与传统人体表面积计算方法进行精度评估和结果对比分析;其次将深度前馈神经网络模型与3种模型进行精度评估和结果对比分析。在与传统方法对比中,深度前馈神经网络模型的决定系数高于2种传统方法的,且比传统方法提高了6%,误差与传统方法的相比降低了近一倍。在与3种模型的对比中,深度前馈神经网络的决定系数比其他模型的提高了至少2%,误差降低。一致性分析实验结果也显示,深度前馈神经网络95%一致性界限最小,一致性最好。总体来说,提出的回归预测模型可以得到更加精确的体表面积预测值。 展开更多
关键词 人体表面积 深度前馈神经网络 回归 预测 交叉验证
在线阅读 下载PDF
基于深度学习的多虚拟同步机微电网在线暂态稳定评估方法 被引量:10
14
作者 赵慧敏 帅智康 +3 位作者 沈阳 程慧婕 赵峰 沈霞 《电力系统自动化》 EI CSCD 北大核心 2022年第9期109-117,共9页
限流策略、源源交互、故障及负荷水平多变等因素使得快速准确评估多虚拟同步机(VSG)微电网的暂态稳定性十分困难。针对现有难题,提出了基于深度学习的多VSG微电网在线暂态稳定评估方法。首先,通过分析VSG控制特性、电流限幅器、故障程... 限流策略、源源交互、故障及负荷水平多变等因素使得快速准确评估多虚拟同步机(VSG)微电网的暂态稳定性十分困难。针对现有难题,提出了基于深度学习的多VSG微电网在线暂态稳定评估方法。首先,通过分析VSG控制特性、电流限幅器、故障程度、负荷水平对系统稳定性的影响,以系统动态参数为主、稳态参数为辅,构建了一组具有强表征能力、可避免维数灾难的原始特征集。基于此,应用深度前馈神经网络及Levenberg-Marquardt算法,提出了多VSG微电网暂态稳定非线性评估模型。在多VSG微电网中的验证结果表明,相比现有方法,所提方法极大地提高了在线暂态稳定评估的准确率,可快速实现多VSG微电网在复杂工况下的稳定性准确判别,具有良好的评估性能。 展开更多
关键词 虚拟同步机 在线暂态稳定评估 输入特征选择 深度学习 前馈神经网络
在线阅读 下载PDF
基于BP神经网络代理模型的翼型优化及领域自适应研究 被引量:8
15
作者 陈晨铭 郭雪岩 常林森 《动力工程学报》 CAS CSCD 北大核心 2022年第7期657-663,共7页
采用神经网络代理模型和遗传算法相结合的方法对NACA64(3)-618风力机翼型进行了气动优化。针对青藏高原风场条件下某一工况进行优化时,利用拉丁超立方采样生成参数样本集、通过B样条曲线对翼型进行光滑化处理、采用基于深度前馈网络的... 采用神经网络代理模型和遗传算法相结合的方法对NACA64(3)-618风力机翼型进行了气动优化。针对青藏高原风场条件下某一工况进行优化时,利用拉丁超立方采样生成参数样本集、通过B样条曲线对翼型进行光滑化处理、采用基于深度前馈网络的代理模型预测了升、阻力系数,并结合遗传算法实现了气动优化选型,利用CFD方法验证了优化结果。结果表明:优化翼型的升阻比和升力系数分别提高了4.52%和4.05%,阻力系数降低了0.42%;优化流程能用低维参数表达比较完整的翼型,代理模型能在严苛条件下得到较好的翼型;阻力系数代理模型的精度较高,明显优于升力系数代理模型,而且阻力系数代理模型在领域自适应方面表现良好。 展开更多
关键词 翼型优化 深度学习 代理模型 深度前馈网络 领域自适应
在线阅读 下载PDF
基于深度神经网络(DNN)的压电陶瓷前馈补偿研究 被引量:6
16
作者 熊永程 贾文红 +1 位作者 张丽敏 郑丽芳 《压电与声光》 CAS 北大核心 2022年第1期35-41,共7页
针对压电陶瓷固有的迟滞非线性,设计了一种基于深度神经网络(DNN)的前馈补偿控制系统。该系统包含1个输入层、7个隐藏层和1个输出层。实验结果表明,开环情况下压电陶瓷的位移线性误差达8.91μm。施加神经网络前馈补偿后,压电陶瓷的最大... 针对压电陶瓷固有的迟滞非线性,设计了一种基于深度神经网络(DNN)的前馈补偿控制系统。该系统包含1个输入层、7个隐藏层和1个输出层。实验结果表明,开环情况下压电陶瓷的位移线性误差达8.91μm。施加神经网络前馈补偿后,压电陶瓷的最大位移误差降低到80 nm,稳态误差为±20 nm。进一步测试表明,在10~100 Hz输入频率下系统最大误差小于100 nm,均方根误差为0.01μm,验证了深度神经网络能够准确补偿压电陶瓷动态迟滞非线性,具有较好的频率泛化能力。 展开更多
关键词 压电陶瓷 迟滞非线性 深度神经网络 前馈控制
在线阅读 下载PDF
基于麻雀搜索算法结合深度前馈神经网络的近红外模型转移方法研究 被引量:6
17
作者 刘鑫鹏 秦玉华 +2 位作者 张凤梅 蒋薇 尹志豇 《分析测试学报》 CAS CSCD 北大核心 2022年第11期1621-1628,共8页
该文提出了一种基于麻雀搜索算法结合深度前馈神经网络(SSA-DFN)的近红外光谱模型转移方法。使用深度前馈神经网络拟合不同仪器采集到的光谱之间的非线性函数映射,并将麻雀搜索算法用于网络各层连接权值和阈值的初始化,通过种群中个体... 该文提出了一种基于麻雀搜索算法结合深度前馈神经网络(SSA-DFN)的近红外光谱模型转移方法。使用深度前馈神经网络拟合不同仪器采集到的光谱之间的非线性函数映射,并将麻雀搜索算法用于网络各层连接权值和阈值的初始化,通过种群中个体位置的迭代更新,求得连接权值和阈值的最优初始值;通过多次调整深度前馈神经网络模型的超参数,使网络拟合效果趋于最优,最终确定转移函数。为验证方法的有效性,分别从烟叶近红外光谱谱图、主成分投影和预测结果的角度,将SSA-DFN方法与分段直接校正算法(PDS)、典型相关性分析算法(CCA)转移前后的效果进行了对比。结果表明SSA-DFN方法转移后的从机光谱与原主机光谱重合度最高,转移后主、从机总糖、烟碱含量的预测结果差异不显著,预测平均误差从8.32%、9.15%分别降至4.65%、4.82%,预测均方根误差(RMSEP)和决定系数(R^(2))等指标均优于PDS和CCA,取得了最佳的转移效果,可满足企业需求。结果表明该方法是一种有效的模型转移方法。 展开更多
关键词 模型转移 麻雀搜索算法 深度前馈神经网络 近红外光谱
在线阅读 下载PDF
基于深度前馈网络的电能质量复合扰动识别 被引量:22
18
作者 许立武 李开成 +3 位作者 肖贤贵 赵晨 尹家明 倪逸 《电测与仪表》 北大核心 2020年第1期62-69,130,共9页
针对电能质量复合扰动识别中识别准确率不高和泛化性能较差的问题,提出基于深度前馈网络(Deep Feedforward Network,DFN)的扰动识别方法。先在少数重要频率点上对扰动信号作不完全S变换,从得到的时频矩阵中提取多种识别特征,构建和训练... 针对电能质量复合扰动识别中识别准确率不高和泛化性能较差的问题,提出基于深度前馈网络(Deep Feedforward Network,DFN)的扰动识别方法。先在少数重要频率点上对扰动信号作不完全S变换,从得到的时频矩阵中提取多种识别特征,构建和训练三层DFN扰动分类器,并使用Dropout正则化来提高分类器的泛化性能。仿真实验和实测实验表明,文中的方法能够有效识别8种复合扰动在内的共17种扰动类型,并具有很好的抗噪性能和泛化性能。与CART决策树、极限学习机、随机森林等现有方法相比,方法识别准确率更高,鲁棒性更好,具有良好的应用前景。 展开更多
关键词 电能质量 扰动识别 深度学习 深度前馈网络 不完全S变换
在线阅读 下载PDF
特征工程和深度前馈网络结合的刀具磨损预测 被引量:7
19
作者 张超标 孙延明 《机械设计与制造》 北大核心 2020年第6期190-193,共4页
针对传统刀具磨损预测中存在的自适应性不强和预测精确度低的问题,提出了特征工程和Dropout深度前馈网络相结合的刀具磨损预测方法.首先从刀具状态监测框架下的多传感器信号中提取全面的特征,与刀具的元信息进行信息融合,然后通过假设... 针对传统刀具磨损预测中存在的自适应性不强和预测精确度低的问题,提出了特征工程和Dropout深度前馈网络相结合的刀具磨损预测方法.首先从刀具状态监测框架下的多传感器信号中提取全面的特征,与刀具的元信息进行信息融合,然后通过假设检验和Benjamini-Yakutieli过程选择与目标磨损相关性强的特征,最后构建Dropout深度前馈网络学习选择的特征与目标磨损之间的映射关系.实验结果表明,提出的这种预测方法的训练过程稳定性高,而且能更精确地预测刀具的磨损. 展开更多
关键词 刀具磨损 刀具状态检测 特征工程 特征提取 特征选择 Dropout深度前馈网络
在线阅读 下载PDF
基于深度学习的页岩储层总有机碳含量预测方法 被引量:4
20
作者 毕臣臣 《科学技术与工程》 北大核心 2023年第2期494-501,共8页
页岩储层总有机碳(total organic carbon,TOC)含量的地震预测普遍采用密度回归拟合法,仅考虑了单因素的线性关系,预测结果误差较大。针对常规方法的不足,提出了基于深度学习的TOC含量预测方法。首先,从测井资料中优选出与TOC含量曲线相... 页岩储层总有机碳(total organic carbon,TOC)含量的地震预测普遍采用密度回归拟合法,仅考虑了单因素的线性关系,预测结果误差较大。针对常规方法的不足,提出了基于深度学习的TOC含量预测方法。首先,从测井资料中优选出与TOC含量曲线相关度相对较高的多个弹性参数曲线作为样本集输入数据,TOC含量曲线作为样本集输出数据,构建针对TOC含量预测的深度前馈神经网络模型;然后,调试网络模型结构,并利用共轭梯度法进行网络参数寻优;最后,将叠前振幅随偏移距变化(amplitude versus offset,AVO)反演得到的弹性参数数据体输入深度前馈神经网络模型,预测得到最终的TOC含量数据体。通过四川盆地页岩储层实际测井、地震资料的应用,对比了该方法相对于常规回归拟合法的优越性,验证了方法的实用性和可行性,为页岩储层TOC含量预测提供了新思路。 展开更多
关键词 深度学习 页岩储层 TOC含量 深度前馈神经网络
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部