期刊文献+
共找到116篇文章
< 1 2 6 >
每页显示 20 50 100
Robust multi-layer extreme learning machine using bias-variance tradeoff 被引量:1
1
作者 YU Tian-jun YAN Xue-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3744-3753,共10页
As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large... As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise. 展开更多
关键词 extreme learning machine deep neural network ROBUSTNESS unsupervised feature learning
在线阅读 下载PDF
基于AMSD-WTSSA-DELM模型的铁路沿线短期风速预测方法
2
作者 尼比江·艾力 张林鍹 +5 位作者 李奕超 景雨啸 高金山 王渊 谢明浩 罗晓龙 《铁道科学与工程学报》 北大核心 2025年第2期543-556,共14页
我国西北地区铁路沿线风速较强且存在非平稳性和波动性,导致风速预测精确度不高、模型泛化性差。基于此,提出一种基于AMSD-WTSSA-DELM的组合预测模型。首先,利用高度非平稳的原始风速序列、分量的长期相关表现、分量所包含的潜在模式及... 我国西北地区铁路沿线风速较强且存在非平稳性和波动性,导致风速预测精确度不高、模型泛化性差。基于此,提出一种基于AMSD-WTSSA-DELM的组合预测模型。首先,利用高度非平稳的原始风速序列、分量的长期相关表现、分量所包含的潜在模式及趋势和周期性等内在信息,进行每步分解处理,分别建立分解条件以及自适应更新阈值;为避免过度分解加入自适应重构方法,分解至无高复杂度分量为止,从而实现适应性较强的自适应多步分解。其次,提出WTSSA算法,即通过在麻雀搜索算法(SSA)中融入混沌映射、自适应权重和自适应t分布扰动策略,提升SSA全局搜索和局部探索能力,加快收敛速度,并通过测试函数验证WTSSA算法的卓越性。然后针对AMSD输出的各分量,分别建立由WTSSA优化权重和偏置的深度极限学习机(DELM)模型。最后汇总所有分量的预测数据,合成最终的预测输出。实验结果表明:模型在2组实际铁路沿线风速数据预测性能上提升效果明显,以第1组实验数据为例,本文方法与DELM相比,平均绝对误差(E_(mae))和均方根误差(E_(rmse))分别降低90.32%和82.25%,决定系数(R^(2))提升43.00%。综上所述,研究成果有效克服了风速的非线性特征导致的时迟问题,具有高泛化性能,能够预测短期风速变化,从而帮助铁路系统做出更有效的安全决策,为列车安全运行提供有力的技术支撑。 展开更多
关键词 短期风速预测 自适应多步分解 深度极限学习机 改进麻雀搜索算法 铁路沿线风速
在线阅读 下载PDF
基于场因子分解的xDeepFM推荐模型
3
作者 李子杰 张姝 +2 位作者 欧阳昭相 王俊 吴迪 《应用科学学报》 CAS CSCD 北大核心 2024年第3期513-524,共12页
极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推... 极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推荐场景下的表现,提出一种基于场因子分解的xDeepFM改进模型。该模型通过场信息增强了特征的表达能力,并建立了多个交叉压缩网络以学习高阶组合特征。最后分析了用户场、项目场设定的合理性,并在3个不同规模的MovieLens系列数据集上通过受试者工作特征曲线下面积、对数似然损失指标进行性能评估,验证了该改进模型的有效性。 展开更多
关键词 推荐算法 极深因子分解机 场因子分解 深度学习
在线阅读 下载PDF
基于ShuffleNet-DELM的轴承故障诊断研究
4
作者 李睿智 杨芳华 +1 位作者 张伟 周旗开 《中国测试》 CAS 北大核心 2024年第6期42-48,共7页
滚动轴承信号是一种典型的非平稳、非线性数据,深度学习模型能够有效提取此类数据特征。为获得更高的精度,深度学习模型不断增加计算量和参数规模,而工程实际中计算机硬件能力和可供训练的数据有限,更注重较快的响应速度和泛化能力。为... 滚动轴承信号是一种典型的非平稳、非线性数据,深度学习模型能够有效提取此类数据特征。为获得更高的精度,深度学习模型不断增加计算量和参数规模,而工程实际中计算机硬件能力和可供训练的数据有限,更注重较快的响应速度和泛化能力。为解决此类矛盾,提出一种基于ShuffleNet-DELM的轴承故障诊断方法。首先将一维的时序信号变换为二维频域张量,再使用改进的ShuffleNetV2模型提取特征,最后经由深度极限学习机(deep extreme learning machine,DELM)方法进行分类,在不同工况的滚动轴承数据集合上取得95.47%的平均准确率。结果表明:该方法响应速度快,能够进一步提高ShuffleNetV2模型对轴承故障的分类精度和泛化能力,有较好的实用价值。 展开更多
关键词 深度学习 ShuffleNet 深度极限学习机 轴承
在线阅读 下载PDF
基于多策略改进麻雀算法优化DELM的CSTR辨识
5
作者 盛斌 张军 《化工设备与管道》 CAS 北大核心 2024年第6期7-16,共10页
针对一类连续搅拌反应釜(CSTR)存在强非线性和时变性,难以建立准确数学模型的问题,提出一种新的基于多策略改进麻雀算法优化深度极限学习机(OtSSA-DELM)的Hammerstein-Wiener模型的辨识建模的方法。针对麻雀算法像其他群智能算法一样后... 针对一类连续搅拌反应釜(CSTR)存在强非线性和时变性,难以建立准确数学模型的问题,提出一种新的基于多策略改进麻雀算法优化深度极限学习机(OtSSA-DELM)的Hammerstein-Wiener模型的辨识建模的方法。针对麻雀算法像其他群智能算法一样后期寻优精度低、易陷入局部最优等缺点提出三点改进措施,首先利用正交阵列对麻雀种群初始化,再使用鱼鹰优化算法在第一阶段的全局勘探策略替换原始麻雀算法的探索者位置更新公式,最后采用t-分布变异策略替换原始麻雀算法的跟随者位置更新公式,并使用测试函数验证其改进的性能。使用改进的麻雀算法对DELM网络训练过程单层网络的输入权重和偏置因子进行寻优,解决DELM易陷入局部最优的缺点。最后利用该混合优化算法对Hammerstein-Wiener模型进行辨识实验,实验表明利用该混合优化算法相比于其他群智能算法优化DELM对Hammerstein-Wiener模型具有较高的辨识精度。 展开更多
关键词 HAMMERSTEIN-WIENER模型 模型辨识 深渡极限学习机 麻雀算法 连续搅拌反应釜
在线阅读 下载PDF
有色金属行业碳排放情景预测研究——以陕西省为例
6
作者 杨玮 张林怡 +3 位作者 龙涛 邓莎 杨超 雷永康 《安全与环境学报》 北大核心 2025年第7期2858-2866,共9页
科学识别碳排放的主要影响因素并准确预测碳排放峰值对实现“双碳”目标具有重要意义。研究以能源、资源供应大省——陕西省为例,基于1997—2021年陕西省经济社会发展和有色金属能源消费数据,运用Lasso回归模型识别影响陕西省有色金属... 科学识别碳排放的主要影响因素并准确预测碳排放峰值对实现“双碳”目标具有重要意义。研究以能源、资源供应大省——陕西省为例,基于1997—2021年陕西省经济社会发展和有色金属能源消费数据,运用Lasso回归模型识别影响陕西省有色金属行业碳排放的主要影响因素,并通过构建粒子群算法(Particle Swarm Optimization, PSO)优化的深度极限学习机(Deep Extreme Learning Machine, DELM)模型对陕西省有色金属行业2022—2035年的碳排放进行情景预测。结果显示:省经济增速、能源消费总量、能源强度等6个因素是影响陕西省有色金属行业碳排放的主要因素;PSO-DELM模型的预测精度比DELM模型更高,其决定系数、平均绝对百分比误差、平均绝对误差和均方根误差分别为0.99、0.36%、0.02和0.03。情景预测结果表明,在低碳、基准和高碳情景下,陕西省有色金属行业碳排放将分别于2028年、2032年和2034年达峰,峰值分别为280.05万t、432.05万t和616.23万t。 展开更多
关键词 环境工程学 Lasso回归 深度极限学习机 粒子群优化算法 碳排放 情景预测
在线阅读 下载PDF
极薄煤层破碎顶板条件下液压支架带压移架残余支撑力决策方法
7
作者 张传伟 张刚强 +4 位作者 路正雄 李林岳 何正伟 龚凌霄 黄骏峰 《工矿自动化》 北大核心 2025年第3期22-31,38,共11页
在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深... 在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深度混合核极限学习机(DHKELM)的液压支架带压移架残余支撑力决策方法。在混合核极限学习机(HKELM)基础上引入极限学习机自动编码器(ELM-AE)结构来构建DHKELM模型,以增强对复杂输入的特征提取和非线性映射能力;引入ICMIC混沌映射、Lévy飞行和贪婪策略对蜣螂算法(DBO)进行改进,形成具备更高寻优精度和更快收敛速度的IDBO算法;利用IDBO算法优化DHKELM模型的超参数,建立IDBO-DHKELM模型。结合极薄煤层综采工作面液压支架带压移架实测数据,通过可视化和相关性分析,确定支架号、带压移架前支架支撑力、推移油缸进液压力和推移油缸行程变化速度作为影响残余支撑力的关键特征,并构建残余支撑力决策样本数据集,最终完成IDBO-DHKELM模型的训练与评估。实验结果表明:基于IDBO-DHKELM模型的液压支架带压移架残余支撑力决策结果的均方根误差(RMSE)、平均绝对误差(MAE)及决定系数(R^(2))分别为0.143,0.119,0.971,具有较高的决策精确度。 展开更多
关键词 极薄煤层 液压支架 带压移架 残余支撑力 改进蜣螂算法 深度混合核极限学习机
在线阅读 下载PDF
标签分布不平衡的涡旋光束轨道角动量识别
8
作者 于海洋 尚凡华 +2 位作者 王宇兴 王大涛 陈纯毅 《中国光学(中英文)》 北大核心 2025年第2期207-215,共9页
针对标签分布不平衡的涡旋光束轨道角动量(OAM)识别问题,提出了一种基于全局代价的合成少数类过采样技术(SMOTE)的深度极限学习机(DELM)的衍生模型。与典型的机器学习方法不同,本文所提方法能够获得映射模型解析表达,避免了反复的参数... 针对标签分布不平衡的涡旋光束轨道角动量(OAM)识别问题,提出了一种基于全局代价的合成少数类过采样技术(SMOTE)的深度极限学习机(DELM)的衍生模型。与典型的机器学习方法不同,本文所提方法能够获得映射模型解析表达,避免了反复的参数优化过程,使模型适用于工程应用。在数据生成阶段,利用协方差的逆矩阵去除量纲的影响,有效度量了同一类样本的差异性。在模型选择阶段,考虑了光信号在大气湍流中的传输特性,采用DELM表征光斑样本和标签之间的映射关系,并用快速迭代收缩阈值FISTA算法计算模型的解析表达式。在不同强度的大气湍流数据集上进行实验,对比了WELM、k近邻等代表性方法性能。实验结果表明,在不同的湍流强度下,所提方法均方根误差达到0.2049和0.0894,各项评价指标均优于对比方法。证明了所提方法能够充分挖掘了OAM光斑集合的特征,具有更好的识别效果。 展开更多
关键词 大气湍流 轨道角动量 不平衡数据 深度极限学习机
在线阅读 下载PDF
基于PSO-DELM的手机上网流量预测方法 被引量:10
9
作者 周莉 刘东 郑晓亮 《计算机工程与设计》 北大核心 2021年第2期316-323,共8页
为提高手机上网流量预测的精度,提出一种使用粒子群算法优化深度极限学习机的手机上网流量预测方法。流量数据具有非线性、自相似性和长相关性的特性,且以时间刻度为单位记录。通过对具有时序性质的一维流量数据重新排列组合,产生新的... 为提高手机上网流量预测的精度,提出一种使用粒子群算法优化深度极限学习机的手机上网流量预测方法。流量数据具有非线性、自相似性和长相关性的特性,且以时间刻度为单位记录。通过对具有时序性质的一维流量数据重新排列组合,产生新的多维流量数据样本集,采用PSO算法优化DELM中的多个隐含层的神经元个数构成PSO-DELM组合模型进行流量预测。实验结果表明,PSO-DELM模型预测的效果明显优于其它模型,能更好满足流量预测的实时性和高精度的要求。 展开更多
关键词 流量预测 粒子群算法 深度极限学习机 时序性质 组合模型
在线阅读 下载PDF
基于深度极限学习机的暂态稳定预防控制方法
10
作者 刘颂凯 曾羽聪 +5 位作者 张磊 李彦彰 王秋杰 刘龙成 陈萍 赵文博 《广西师范大学学报(自然科学版)》 北大核心 2025年第5期64-74,共11页
在电力系统暂态稳定预防控制中时域仿真计算复杂,同时系统存在样本不平衡问题,影响机器学习模型的性能。针对上述问题,本文提出一种基于深度极限学习机(deep extreme learning machine,DELM)的暂态稳定预防控制方法。首先采用过采样技... 在电力系统暂态稳定预防控制中时域仿真计算复杂,同时系统存在样本不平衡问题,影响机器学习模型的性能。针对上述问题,本文提出一种基于深度极限学习机(deep extreme learning machine,DELM)的暂态稳定预防控制方法。首先采用过采样技术处理样本不平衡;然后利用DELM发现平衡数据集的潜在信息,建立电力系统运行特征和暂态稳定指标之间的映射模型,在预防控制中引入基于DELM的暂态稳定预测模型来代替暂态稳定约束最优潮流(transient stability constrained optimal power flow,TSCOPF)模型中含微分代数方程的暂态稳定约束,减少计算复杂度,并采用萤火虫算法对模型进行求解,获取最终策略;最后在IEEE 39节点系统进行仿真验证。结果表明,在预防故障发生时,本文所提的预防控制方法能够以2042美元的优化调整成本实现系统暂态稳定性的提高,将暂态失稳的情况调节为稳定,且采用的萤火虫算法求解的计算时间可以控制在20 s以内,表明本文提出的基于DELM暂态稳定预防控制方法能够有效提升系统的暂态稳定性,且在具有较快的计算速度的同时具有良好的经济性。 展开更多
关键词 暂态稳定 预防控制 最优潮流 样本不平衡 深度极限学习机 萤火虫算法
在线阅读 下载PDF
基于分布式非线性映射和并行输入的BiLSTM软测量建模方法
11
作者 刘翌晗 王艳 +2 位作者 马浩 王团结 戴翠红 《化工学报》 北大核心 2025年第7期3373-3387,共15页
实际化工工业过程数据往往存在多重共线性、高度非线性等多重特性,这会严重影响传统软测量模型对关键质量变量的预测精度。针对这一局限性,提出了一种分布式非线性映射和并行输入的双向长短记忆(distributed nonlinear mapping and para... 实际化工工业过程数据往往存在多重共线性、高度非线性等多重特性,这会严重影响传统软测量模型对关键质量变量的预测精度。针对这一局限性,提出了一种分布式非线性映射和并行输入的双向长短记忆(distributed nonlinear mapping and parallel input bidirectional long short-term memory,DNMPI-BiLSTM)软测量模型。在所提策略中,首先为了阐述过程变量与质量变量之间的关联性,采用互信息以及最大相关最小冗余方法对输入数据集进行分类。随后,为了充分挖掘工业过程内部所包含的高度复杂的非线性关系,利用深度极限学习机的隐藏层对子过程变量空间进行非线性映射到高维空间。最后,将三类数据的非线性映射结果并行,建立了基于分布式非线性映射和并行输入的DNMPI-BiLSTM软测量模型,以提升模型对复杂工业过程质量变量的预测能力。通过三个工业案例验证所提方法的有效性,仿真结果表明,所提出的基于分布式非线性映射和并行输入的BiLSTM软测量建模方法的预测精度优于其他先进模型。 展开更多
关键词 双向长短期记忆 软测量 深度极限学习机 分布式输入 非线性映射
在线阅读 下载PDF
基于边缘智能的电磁能装备轻量化故障诊断方法
12
作者 单南良 徐兴华 +2 位作者 鲍先强 丁启翔 廖涛 《电工技术学报》 北大核心 2025年第3期821-831,共11页
随着海量状态监测数据的获取,复杂电磁能装备的关键部件健康状态监测对于实时性和可靠性的要求不断增加,研究利用边缘智能技术赋能装备故障诊断是一种很有发展前景的方法。边缘智能技术致力于将智能算法和算力资源下沉到设备端,在靠近... 随着海量状态监测数据的获取,复杂电磁能装备的关键部件健康状态监测对于实时性和可靠性的要求不断增加,研究利用边缘智能技术赋能装备故障诊断是一种很有发展前景的方法。边缘智能技术致力于将智能算法和算力资源下沉到设备端,在靠近数据源的位置对数据进行处理,能够很好地解决工业嵌入式系统资源受限和海量数据传输所带来的故障诊断时延,防止设备过度损坏。该文提出一种基于边缘智能的轻量化故障诊断方法,在数据采集过程中利用压缩感知技术将密集型的多元监测数据非线性压缩为稀疏采样数据,故障诊断模型集成了深度极限学习机和核函数,深度挖掘压缩采样信号与故障类型之间的内在联系。通过模型轻量化技术,将诊断模型部署在设备端的边缘智能计算卡上,显著降低了数据的传输、计算和存储压力,从而提高了智能故障诊断的实时性。 展开更多
关键词 压缩感知 深度极限学习机 核函数 轻量化故障诊断
在线阅读 下载PDF
基于灰狼算法优化深度极限学习机的钢轨热处理性能预测模型
13
作者 蔡里批 李硕 丁敬国 《材料与冶金学报》 北大核心 2025年第2期162-170,共9页
为了研究钢轨的化学成分、入口温度、环境温度,以及风冷时风压、风速等参数对热处理钢轨性能的综合影响,进一步解决钢轨热处理后设定精度低的难题,开发了一种基于灰狼算法优化深度极限学习机(grey wolf optimization deep extreme learn... 为了研究钢轨的化学成分、入口温度、环境温度,以及风冷时风压、风速等参数对热处理钢轨性能的综合影响,进一步解决钢轨热处理后设定精度低的难题,开发了一种基于灰狼算法优化深度极限学习机(grey wolf optimization deep extreme learning machine,GWO-DELM)的钢轨热处理性能预测模型.先采用深度极限学习机(DELM)构建出工艺模型,而后,针对深度极限学习机中初始权值随机确定而引起的预测结果准确度较低的问题,利用灰狼优化算法(GWO)对初始权值进一步确定.结果表明:该模型在预测不同规格钢轨的抗拉强度时,95.80%以上样本点的预测误差集中在-20~20 MPa,在预测踏面布氏硬度时,95.73%以上样本点的预测误差集中在-8~8;与传统模型相比,GWO-DELM具有更优异的预测精度及泛化能力,可应用在热轧钢轨风冷处理的性能预测上,为热处理参数的选择提供参考. 展开更多
关键词 钢轨热处理 灰狼优化算法 深度极限学习机 性能参数预测
在线阅读 下载PDF
数据驱动型振荡模式预测方案及谐振抑制分析
14
作者 丁炅 朱介北 +3 位作者 张淼 边翊楠 俞露杰 贾宏杰 《电力系统自动化》 北大核心 2025年第12期79-90,共12页
为实现对新型电力系统小干扰稳定性的快速评估,抑制潜在的模式谐振,文中提出一种基于测量信号和运行场景信息的数据驱动型振荡模式预测(DOMP)方案。首先,基于多通道测量信号辨识系统在历史运行场景下的振荡模式,解决模型训练过程中的数... 为实现对新型电力系统小干扰稳定性的快速评估,抑制潜在的模式谐振,文中提出一种基于测量信号和运行场景信息的数据驱动型振荡模式预测(DOMP)方案。首先,基于多通道测量信号辨识系统在历史运行场景下的振荡模式,解决模型训练过程中的数据来源问题。其次,基于深度极限学习机算法建立系统振荡模式预测模型,以历史数据中的场景信息为输入、振荡模式的辨识结果为输出,对预测模型进行训练与准确性评估,提高DOMP方案的预测准确性。基于DOMP的模式预测结果可优化系统控制参数,避免系统在运行过程中产生模式谐振,提高系统的小干扰稳定性。通过IEEE 39节点模型,验证了所提DOMP方案可通过场景信息快速、准确地预测系统在未来场景下的振荡模式,进而通过参数优化抑制系统在运行过程中产生的模式谐振,提高系统稳定性。 展开更多
关键词 振荡模式 预测 模型训练 小干扰稳定性 数据驱动 深度极限学习机 谐振抑制
在线阅读 下载PDF
基于TVFEMDⅡ-十种鱼群算法-DHKELM模型的日含沙量预测 被引量:1
15
作者 邓智予 谢静 崔东文 《中国农村水利水电》 北大核心 2025年第3期61-70,共10页
为提高日含沙量时间序列预测精度,改进深度混合核极限学习机(DHKELM)预测性能,对比验证十种鱼群算法——电鳗觅食优化算法(EEFO)/成吉思汗鲨鱼优化(GKSO)算法/白鲸优化(BWO)算法/白鲨优化(WSO)算法/鲸鱼优化算法(WOA)/金枪鱼优化(TSO)算... 为提高日含沙量时间序列预测精度,改进深度混合核极限学习机(DHKELM)预测性能,对比验证十种鱼群算法——电鳗觅食优化算法(EEFO)/成吉思汗鲨鱼优化(GKSO)算法/白鲸优化(BWO)算法/白鲨优化(WSO)算法/鲸鱼优化算法(WOA)/金枪鱼优化(TSO)算法/旗鱼优化(SFO)算法/海洋捕食者算法(MPA)/?鱼优化算法(ROA)/蝠鲼觅食优化(MRFO)算法在基准测试函数和实例目标函数上的优化效果,提出时变滤波器经验模态二次分解(TVFEMDⅡ)-十种鱼群算法-DHKELM日含沙量时间序列预测模型。首先,利用TVFEMDⅡ对日含沙量时间序列进行分解处理,得到若干分解分量,合理划分训练集和预测集;其次,基于各分量训练集构建DHKELM超参数优化实例目标函数,同时选取8个基准测试函数作为对比验证函数,利用十种鱼群算法分别对基准测试函数和实例目标函数进行极值寻优与对比分析。最后,建立TVFEMDⅡ-十种鱼群算法-DHKELM模型,通过云南省龙潭站汛期日含沙量预测实例对各模型进行验证。结果表明:(1)十种鱼群算法对基准测试函数寻优总排名与对实例目标函数寻优总排名仅有10%相同,总体上EEFO、GKSO寻优效果较好,ROA、WSO较差。(2)十种鱼群算法对实例目标函数寻优总排名与十种鱼群算法优化的各模型预测精度总排名基本一致,表明鱼群算法极值寻优能力越强,其优化获得的DHKELM超参数越优,由此构建的预测模型性能越好,日含沙量预测精度越高。(3)TVFEMDⅡ-十种鱼群算法-DHKELM模型对实例日含沙量预测的平均绝对百分比误差(MAPE)在0.927%~1.583%之间,模型计算规模小、预测精度高、稳健性能好,具有较好的实用价值和意义。(4)在分解分量十分有限的情形下,TVFEMDⅡ能将复杂的日含沙量时间序列分解为更具规律、更易建模预测的模态分量,大大改进时间序列分解效果,显著提升日含沙量预测精度。 展开更多
关键词 日含沙量预测 时变滤波器经验模态分解 二次分解 十种鱼群算法 深度混合核极限学习机 函数优化
在线阅读 下载PDF
基于RFID传感器和深度学习的开关柜故障诊断研究
16
作者 王真 刘子全 +1 位作者 路永玲 李玉杰 《电力科学与技术学报》 北大核心 2025年第2期179-185,共7页
为提高开关柜故障诊断的准确性,提出一种基于RFID传感器和深度学习的开关柜故障诊断算法。首先,设计用于采集开关柜电流信号和温度射频识别(radio frequency identification,RFID)的传感标签;其次,采集的信号通过深度信念网络(deep beli... 为提高开关柜故障诊断的准确性,提出一种基于RFID传感器和深度学习的开关柜故障诊断算法。首先,设计用于采集开关柜电流信号和温度射频识别(radio frequency identification,RFID)的传感标签;其次,采集的信号通过深度信念网络(deep belief networks,DBN)进行深层次特征提取,并将稀疏编码(sparse code,SC)融合到DBN网络中,提高其检测精度;最后,为提高检测速度,采用极限学习机(extreme learning machine,ELM)对特征提取的信号进行分类识别。研究结果表明,相比于其他算法,本文提出的SDBN-ELM故障诊断模型检测精度更高,识别速度更快,其准确率可达99.63%。 展开更多
关键词 开关柜 RFID 深度信念网络 极限学习机 故障诊断
在线阅读 下载PDF
基于海马优化深层极限学习机的电力信息物理系统FDIA检测
17
作者 席磊 白芳岩 +3 位作者 王文卓 彭典名 陈洪军 李宗泽 《电力系统保护与控制》 北大核心 2025年第4期14-26,共13页
虚假数据注入攻击(false data injection attack,FDIA)严重威胁电力信息物理系统的安全稳定。针对已有FDIA检测算法无法精确定位受攻击位置的局限性,提出了一种基于精英余弦变异融合的海马优化算法优化深层极限学习机(deep extreme lear... 虚假数据注入攻击(false data injection attack,FDIA)严重威胁电力信息物理系统的安全稳定。针对已有FDIA检测算法无法精确定位受攻击位置的局限性,提出了一种基于精英余弦变异融合的海马优化算法优化深层极限学习机(deep extreme learning machine,DELM)的FDIA检测定位算法。首先,该算法将极限学习机和极限学习机自编码器相结合得到了具备强特征表达能力的DELM。然后,通过海马优化算法对DELM的偏置和输入权重进行择优,用于改善算法指标不稳定的问题。同时在捕食阶段引入精英余弦变异算法以提升海马的收敛速度与DELM的精度。最后,将系统量测数据作为输入特征,利用DELM得到节点状态标签,从而实现污染状态量的定位。通过在IEEE 14节点系统和IEEE 57节点系统进行大量仿真对比分析,验证了所提算法在准确率、精确率、召回率及F1值等检测定位性能方面均具有明显优势,能够实现FDIA的精确定位。 展开更多
关键词 电力信息物理系统 虚假数据注入攻击 海马优化算法 深层极限学习机
在线阅读 下载PDF
基于OVMD-SSA-DELM-GM模型的超短期风电功率预测方法 被引量:47
18
作者 曾亮 雷舒敏 +1 位作者 王珊珊 常雨芳 《电网技术》 EI CSCD 北大核心 2021年第12期4701-4710,共10页
为了提高风电功率的预测精度,提出了一种基于最优变分模态分解(optimal variational model decomposition,OVMD)、麻雀算法(sparrow search algorithm,SSA)、深度极限学习机(deep extreme learning machine,DELM)和灰色模型(grey model,... 为了提高风电功率的预测精度,提出了一种基于最优变分模态分解(optimal variational model decomposition,OVMD)、麻雀算法(sparrow search algorithm,SSA)、深度极限学习机(deep extreme learning machine,DELM)和灰色模型(grey model,GM)的超短期风电功率预测方法。该方法通过OVMD对原始风电功率时间序列进行自适应分解;然后针对各分量建立DELM预测模型并利用SSA算法进行参数寻优,并对各个分量的预测结果进行求和重构;利用GM对误差序列进行预测;最后将误差的预测值与原始风电功率的预测值叠加得到最终预测结果。对北方某风电场的风电功率数据进行仿真实验,结果表明,该方法预测效果明显优于传统方法,有效提高了超短期风电功率预测的精确性。 展开更多
关键词 超短期风电功率预测 最优变分模态分解 深度极限学习机 麻雀算法 灰色模型
在线阅读 下载PDF
基于WOA-DELM的成都地铁建设阶段温室气体预测 被引量:9
19
作者 陈政 郭亚林 郭春 《隧道建设(中英文)》 CSCD 北大核心 2022年第12期2048-2063,共16页
为解决成都地铁设计和修建过程中碳排放计量问题,以成都地铁18号线6车站7区间为研究对象,采用机器学习算法对成都地铁建设阶段碳排放进行预测研究。基于生命周期评价(life cycle assessment,LCA)框架对地铁车站和盾构区间建筑材料生产... 为解决成都地铁设计和修建过程中碳排放计量问题,以成都地铁18号线6车站7区间为研究对象,采用机器学习算法对成都地铁建设阶段碳排放进行预测研究。基于生命周期评价(life cycle assessment,LCA)框架对地铁车站和盾构区间建筑材料生产阶段、建筑材料运输阶段和现场施工阶段温室气体排放量进行计算,建立基于鲸鱼优化算法(whale optimization algorithm,WOA)的深度极限学习机(deep extreme learning machine,DELM)地铁碳排放预测模型,并与基于风驱动优化(wind driven optimizer,WDO)、灰狼优化(grey wolf optimizer,GWO)、粒子群优化(particle swarm optimizer,PSO)、人工蜂群优化(artificial bee colony,ABC)、多元宇宙优化(multi-verse optimizer,MVO)、原子搜索优化(atom search optimizer,ASO)的深度极限学习机(DELM)和未优化的BP(back propagation neural network)、KELM(kernel extreme learning machine)、DELM算法预测结果进行对比分析。研究得到:1)WOA-DELM算法预测结果相关一致性为0.757,略高于其他算法;2)根据WOA-DELM算法对地铁碳排放主要输入指标进行敏感性分析,得到地铁车站碳排放预测的关键影响因素为车站长度和轨面埋深,对应指标碳排放相对变化率分别为30.1%和23.1%。 展开更多
关键词 地铁 生命周期评价 碳排放 深度极限学习机 预测模型
在线阅读 下载PDF
基于EG-SSMA-DELM的数控铣床刀具RUL预测研究 被引量:5
20
作者 张天骁 谷艳玲 安文杰 《机电工程》 CAS 北大核心 2023年第9期1464-1470,共7页
在工件的加工过程中,刀具失效会造成工件报废和关键部件损坏等问题,为此,提出了一种基于精英反向学习与黄金正弦优化黏菌算法结合深度极限学习机(EG-SSMA-DELM)的刀具磨损剩余寿命预测模型。首先,在黏菌算法(SMA)中,采用精英反向学习(EO... 在工件的加工过程中,刀具失效会造成工件报废和关键部件损坏等问题,为此,提出了一种基于精英反向学习与黄金正弦优化黏菌算法结合深度极限学习机(EG-SSMA-DELM)的刀具磨损剩余寿命预测模型。首先,在黏菌算法(SMA)中,采用精英反向学习(EOBL)与黄金正弦(GSA)算法优化初始黏菌种群,提高了初始种群的多样性,改进了初始SMA搜索个体位置的更新方式,提高了算法的收敛速度与全局搜索能力,得到了最优参数;然后,利用改进的SMA算法,对深度极限学习机(DELM)中编码器的偏置与输入权重进行了联合优化,定义了不同数量的隐藏层神经元,利用ReLU激活函数对DELM的参数进行了理想排列;最后,根据最优参数,将投影特征输入DELM中进行了训练和预测,从而对刀具进行了剩余使用寿命预测。研究结果表明:相比于经典的深度极限学习机方法,EG-SSMA-DELM方法的均方根误差(RMSE)平均下降了19.60%,预测精度提高了16.00%;与其他深度学习算法相比,该算法模型具有更好的可行性、单调性和更强的鲁棒性。该算法模型对实际工程刀具磨损剩余寿命研究有一定的应用价值。 展开更多
关键词 剩余使用寿命 刀具寿命预测 精英反向学习 黄金正弦算法 黏菌算法 深度极限学习机
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部