期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A deep dense captioning framework with joint localization and contextual reasoning
1
作者 KONG Rui XIE Wei 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2801-2813,共13页
Dense captioning aims to simultaneously localize and describe regions-of-interest(RoIs)in images in natural language.Specifically,we identify three key problems:1)dense and highly overlapping RoIs,making accurate loca... Dense captioning aims to simultaneously localize and describe regions-of-interest(RoIs)in images in natural language.Specifically,we identify three key problems:1)dense and highly overlapping RoIs,making accurate localization of each target region challenging;2)some visually ambiguous target regions which are hard to recognize each of them just by appearance;3)an extremely deep image representation which is of central importance for visual recognition.To tackle these three challenges,we propose a novel end-to-end dense captioning framework consisting of a joint localization module,a contextual reasoning module and a deep convolutional neural network(CNN).We also evaluate five deep CNN structures to explore the benefits of each.Extensive experiments on visual genome(VG)dataset demonstrate the effectiveness of our approach,which compares favorably with the state-of-the-art methods. 展开更多
关键词 dense captioning joint localization contextual reasoning deep convolutional neural network
在线阅读 下载PDF
Deep residual systolic network for massive MIMO channel estimation by joint training strategies of mixed-SNR and mixed-scenarios
2
作者 SUN Meng JING Qingfeng ZHONG Weizhi 《Journal of Systems Engineering and Electronics》 2025年第4期903-913,共11页
The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional ch... The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments. 展开更多
关键词 massive multiple-input multiple-output(MIMO) channel estimation deep residual shrinkage network(DRSN) deep convolutional neural network(CNN).
在线阅读 下载PDF
Research on Automatic Diagnostic Technology of Soybean Leaf Diseases Based on Improved Transfer Learning
3
作者 Yu Xiao Jing Yong-dong Zheng Lu-lu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第2期62-72,共11页
Soybean diseases and insect pests are important factors that affect the output and quality of the soybean,thus,it is necessary to do correct inspection and diagnosis on them.For this reason,based on improved transfer ... Soybean diseases and insect pests are important factors that affect the output and quality of the soybean,thus,it is necessary to do correct inspection and diagnosis on them.For this reason,based on improved transfer learning,a classification method of the soybean leaf diseases was proposed in this paper.In detail,this method first removed the complicated background in images and cut apart leaves from the entire image;second,the data-augmented method was applied to amplify the separated leaf disease image dataset to reduce overfitting;at last,the automatically fine-tuning convolutional neural network(AutoTun)was adopted to classify the soybean leaf diseases.The proposed method respectively reached 94.23%,93.51%and 94.91%of validation accuracy rates on VGG-16,ResNet-34 and DenseNet-121,and it was compared with the traditional fine-tuning method of transfer learning.The results indicated that the proposed method had superior to the traditional transfer learning method. 展开更多
关键词 transfer learning deep convolutional neural network classification recognition soybean disease
在线阅读 下载PDF
Aerial multi-spectral AI-based detection system for unexploded ordnance 被引量:3
4
作者 Seungwan Cho Jungmok Ma Oleg A.Yakimenko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期24-37,共14页
Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent... Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent technological advancements in artificial intelligence(AI)and small unmanned aerial systems(sUAS)present an opportunity to explore a novel concept for UXO detection.The new UXO detection system proposed in this study takes advantage of employing an AI-trained multi-spectral(MS)sensor on sUAS.This paper explores feasibility of AI-based UXO detection using sUAS equipped with a single(visible)spectrum(SS)or MS digital electro-optical(EO)sensor.Specifically,it describes the design of the Deep Learning Convolutional Neural Network for UXO detection,the development of an AI-based algorithm for reliable UXO detection,and also provides a comparison of performance of the proposed system based on SS and MS sensor imagery. 展开更多
关键词 Unexploded ordnance(UXO) Multispectral imaging Small unmanned aerial systems(sUAS) Object detection deep learning convolutional neural network(DLCNN)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部