期刊文献+
共找到848篇文章
< 1 2 43 >
每页显示 20 50 100
Visual-simulation region proposal and generative adversarial network based ground military target recognition 被引量:1
1
作者 Fan-jie Meng Yong-qiang Li +2 位作者 Fa-ming Shao Gai-hong Yuan Ju-ying Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第11期2083-2096,共14页
Ground military target recognition plays a crucial role in unmanned equipment and grasping the battlefield dynamics for military applications, but is disturbed by low-resolution and noisyrepresentation. In this paper,... Ground military target recognition plays a crucial role in unmanned equipment and grasping the battlefield dynamics for military applications, but is disturbed by low-resolution and noisyrepresentation. In this paper, a recognition method, involving a novel visual attention mechanismbased Gabor region proposal sub-network(Gabor RPN) and improved refinement generative adversarial sub-network(GAN), is proposed. Novel central-peripheral rivalry 3D color Gabor filters are proposed to simulate retinal structures and taken as feature extraction convolutional kernels in low-level layer to improve the recognition accuracy and framework training efficiency in Gabor RPN. Improved refinement GAN is used to solve the problem of blurry target classification, involving a generator to directly generate large high-resolution images from small blurry ones and a discriminator to distinguish not only real images vs. fake images but also the class of targets. A special recognition dataset for ground military target, named Ground Military Target Dataset(GMTD), is constructed. Experiments performed on the GMTD dataset effectively demonstrate that our method can achieve better energy-saving and recognition results when low-resolution and noisy-representation targets are involved, thus ensuring this algorithm a good engineering application prospect. 展开更多
关键词 deep learning Biological vision Military application Region proposal network Gabor filter generative adversarial network
在线阅读 下载PDF
基于MTF-DCGAN的齿轮箱故障诊断方法研究
2
作者 杨敏 孙文磊 +4 位作者 刘志远 钟荟玄 辜英政 王云浩 张宇 《机床与液压》 北大核心 2025年第12期17-24,共8页
为解决齿轮箱故障诊断过程中因样本分布不均衡导致的模型泛化性能不足和识别准确度不高的问题,提出基于MTF-DCGAN和改进EfficientNet网络的故障诊断方法。根据马尔可夫转移场(MTF)图像编码原理将收集的一维振动信号转换成二维可视化图像... 为解决齿轮箱故障诊断过程中因样本分布不均衡导致的模型泛化性能不足和识别准确度不高的问题,提出基于MTF-DCGAN和改进EfficientNet网络的故障诊断方法。根据马尔可夫转移场(MTF)图像编码原理将收集的一维振动信号转换成二维可视化图像,按比例划分训练集和测试集;将训练集数据与随机向量输入至深度卷积生成对抗网络(DCGAN)模型中,交替训练生成器和判别器直至实现纳什均衡,生成与原始样本特征相似的新增样本,以此扩充故障数据集;最后,对EfficientNet的MBConv模块数量和激活函数进行改进,并将原始样本及增广后的样本集导入改进后的EfficientNet中进行特征提取,实现齿轮箱故障的识别与分类。结果表明:所提方法显著提高了样本不均衡情况下齿轮箱故障的诊断准确率,具有维度变换简单和模型参数量小的优势,加快了收敛速率。 展开更多
关键词 故障诊断 马尔可夫转移场 深度卷积生成对抗网络 改进EfficientNet 齿轮箱
在线阅读 下载PDF
基于改进DCGAN的棉叶螨为害图像数据增强方法 被引量:1
3
作者 雷竣杰 周保平 《江苏农业学报》 北大核心 2025年第5期916-926,共11页
为解决棉叶螨不同为害程度图像样本量不足和类别不平衡的问题,降低数据采集成本,并提高生成对抗网络生成图像的质量和多样性,本研究提出了一种基于改进DCGAN模型的棉叶螨为害图像数据增强方法。在原始模型的基础上,引入类别标签,使模型... 为解决棉叶螨不同为害程度图像样本量不足和类别不平衡的问题,降低数据采集成本,并提高生成对抗网络生成图像的质量和多样性,本研究提出了一种基于改进DCGAN模型的棉叶螨为害图像数据增强方法。在原始模型的基础上,引入类别标签,使模型能够针对不同等级的棉叶螨为害图像进行针对性生成,有效解决类别不平衡问题;其次,将传统的直连结构替换为残差结构,增强模型对复杂映射关系的学习能力,避免梯度消失问题,提升生成图像的质量;接着,在卷积层中嵌入卷积注意力模块(CBAM),强化模型对棉叶螨为害图像关键特征的提取能力,进一步提高生成图像的质量和多样性;最后,采用带有梯度惩罚的Wasserstein距离作为损失函数,避免模式崩溃的问题,增强模型的训练稳定性。改进后的DCGAN模型在训练稳定性和生成图像质量方面均优于原始模型,其生成图像的Inception score(IS,8.51)、Fréchet inception distance(FID,150.12)、Kernel inception distance(KID,0.06)和结构相似性指数(SSIM,0.82)均高于其他经典数据增强模型生成的图像。以改进的DCGAN模型生成的图像构建训练集训练棉叶螨为害图像分级模型——DenseNet-121模型,结果表明,基于改进的DCGAN模型生成的数据集训练的DenseNet-121模型平均分级准确率达88.02%,高于基于传统增强方法和其他模型生成的数据集训练的DenseNet-121模型。本研究为农业病虫害智能监测提供了技术支持。 展开更多
关键词 棉叶螨 为害程度 深度卷积生成对抗网络(dcgan) 图像数据增强
在线阅读 下载PDF
基于DCGAN数据增强的樱桃番茄可溶性固形物含量光谱检测方法 被引量:2
4
作者 吴至境 刘富强 +1 位作者 李志刚 陈慧 《食品科学》 EI CAS 北大核心 2025年第2期214-221,共8页
针对樱桃番茄在实际检测中样品数不足的特点,本研究提出一种深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN)模型以同时扩充光谱数据及可溶性固形物含量(soluble solids content,SSC)标签数据,并建立... 针对樱桃番茄在实际检测中样品数不足的特点,本研究提出一种深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN)模型以同时扩充光谱数据及可溶性固形物含量(soluble solids content,SSC)标签数据,并建立一维卷积神经网络回归(one dimensional-convolutional neural networks regression,1D-CNNR)模型以提高模型的预测精度和泛化能力。为了比较,分别建立偏最小二乘回归(partial least squares regression,PLSR)模型和支持向量机回归(support vector regression,SVR)模型。将原始80个样品数据集、1000个样品的DCGAN扩充数据集和1080个样品的合并数据集,分别结合1D-CNNR、SVR及PLSR进行建模与预测。为了进一步验证模型的泛化能力,一批新的总数为40个样品的樱桃番茄数据作为上述3个模型的新测试集。结果显示,使用合并数据集划分所得校正集进行1D-CNNR建模后,模型为最优的SSC回归检测模型。此时1D-CNNR面向合并样品测试集的预测准确率最高,预测相关系数r_(p)=0.9807,均方根误差RMSE_(p)=0.1929;与SVR与PLSR对比,1D-CNNR面向新的40个样品数据集的预测准确率也最高,其r_(p)=0.9638,RMSE_(p)=0.2245。本研究可为有效准确检测樱桃番茄的可溶性固形物含量提供一种新思路。 展开更多
关键词 樱桃番茄 可溶性固形物含量 可见-近红外漫反射光谱 深度卷积生成对抗网络 一维卷积神经网络
在线阅读 下载PDF
MTTSNet:Military time-sensitive targets stealth network via real-time mask generation
5
作者 Siyu Wang Xiaogang Yang +4 位作者 Ruitao Lu Zhengjie Zhu Fangjia Lian Qing-ge Li Jiwei Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期601-612,共12页
The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time... The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines. 展开更多
关键词 deep learning Military application Targets stealth network Mask generation generative adversarial network
在线阅读 下载PDF
差分拉曼结合VGG16和DCGAN检验食品包装
6
作者 周君霞 李春宇 +1 位作者 姜红 赵雪珺 《红外与激光工程》 北大核心 2025年第5期92-103,共12页
提出基于具有16层的视觉几何组网络(VGG16)和聚类分析的差分拉曼食品包装检验方法。为了给分类模型提供充足的训练数据,对深度卷积生成对抗网络(DCGAN)的训练策略、生成谱图的质量对VGG16特征提取的影响进行探究。对食品包装的差分拉曼... 提出基于具有16层的视觉几何组网络(VGG16)和聚类分析的差分拉曼食品包装检验方法。为了给分类模型提供充足的训练数据,对深度卷积生成对抗网络(DCGAN)的训练策略、生成谱图的质量对VGG16特征提取的影响进行探究。对食品包装的差分拉曼数据采用Python作成71张谱图后,使用VGG16提取谱图特征,用主成分分析(PCA)对特征降维,使用降维后的特征进行聚类分析。对不同的训练集、不同迭代次数训练出来的DCGAN生成的谱图质量进行比较,并使用VGG16-PCA得到谱图二维特征并可视化。VGG16-PCA-K均值聚类算法和VGG16-PCA-高斯混合模型的聚类准确率分别达到91.5%和88.7%。用同一个类别的谱图作训练集训练的DCGAN,和用全部类别的谱图作训练集训练的DCGAN相比,可以生成谱线更连续、清晰度更高、形状与真实谱图更相似的谱图。将5张生成谱图和25张生成谱图分别与71张真实谱图一起进行VGG16-PCA分析,生成谱图数量占比越大,聚类结果中真实谱图分布变化越大、生成谱图与同类谱图距离越远。将同一个DCGAN模型生成的5张谱图和71张真实谱图一起进行VGG16-PCA分析,针对不同迭代次数的DCGAN的对比研究表明,DCGAN迭代次数越多,生成的谱图越拟真,在可视化图中与同一类别真实谱图距离越近。使用VGG16提取特征可以在免去人工筛选和统计特征峰的工作的同时让聚类结果准确率较高;DCGAN可以生成较为拟真的差分拉曼谱图,生成谱图越拟真则VGG16提取特征越准确。 展开更多
关键词 差分拉曼 食品包装 视觉几何组网络 聚类分析 深度卷积生成对抗网络
在线阅读 下载PDF
基于Res-DCGAN和改进AlexNet的稻谷病害识别方法
7
作者 余子怡 李正权 邢松 《传感器与微系统》 北大核心 2025年第6期38-42,共5页
针对稻谷病害之间差别细微、难以实现精确识别的问题,提出一种基于Res-DCGAN和改进AlexNet的稻谷病害识别方法。首先,针对数据集多样性不足的问题,使用基于残差优化的深度卷积生成对抗网络(Res-DCGAN)联合非生成式方法对数据集进行扩充... 针对稻谷病害之间差别细微、难以实现精确识别的问题,提出一种基于Res-DCGAN和改进AlexNet的稻谷病害识别方法。首先,针对数据集多样性不足的问题,使用基于残差优化的深度卷积生成对抗网络(Res-DCGAN)联合非生成式方法对数据集进行扩充;其次,设计基于高效通道注意力机制的多分支特征提取结构的AlexNet,使不同尺度特征相融合,同时聚焦图像关键信息,且引入批量归一化方法和全局平均池化层,防止过拟合,减少参数量;最后,引入联合损失函数,使模型同时专注于难分类的样本。本文采用的扩充数据集的方式相较于仅使用非生成式方式,精确率提高了2.2%,且改进后的模型准确率达99.05%。相较于传统的AlexNet,VGG16和Inception v3模型分别提高了3.67,2.84和1.97个百分点,其模型收敛更快,泛化能力更好。 展开更多
关键词 计算机视觉 卷积神经网络 高效通道注意力机制 生成对抗网络
在线阅读 下载PDF
基于DCGAN和U^(2)-Net模型的齿轮点蚀辨识
8
作者 刘妤 谭钦宜 古前程 《振动与冲击》 北大核心 2025年第10期301-310,共10页
结合改建的齿轮试验台能够在线获取齿轮工作齿面图像的优势,探讨了基于机器视觉技术实现齿轮点蚀辨识的方法,并开展了试验研究。针对齿轮点蚀样本稀缺,采用深度卷积生成对抗网络(deep convolutional generative adversarial network,DCG... 结合改建的齿轮试验台能够在线获取齿轮工作齿面图像的优势,探讨了基于机器视觉技术实现齿轮点蚀辨识的方法,并开展了试验研究。针对齿轮点蚀样本稀缺,采用深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN),实现了样本的多样化、高质量扩增;结合前期研究基础,提取了齿轮的有效工作齿面,实现了齿面倾斜校正和畸变修正;引入ECA注意力机制,改进了U^(2)-Net模型,实现了齿轮点蚀图像感兴趣区域的精确分割;在此基础上,通过统计齿轮历史点蚀率,构建了基于图像信号的齿轮点蚀辨识模型,实现了齿轮点蚀辨识。结果表明:采用机器视觉技术实现齿轮点蚀辨识的方法是可行的,基于DCGAN和U^(2)-Net模型的齿轮点蚀识别准确率达93.56%。研究成果可为齿轮点蚀辨识提供一种更为直接、可靠的方法,对于机械装备的状态监测有一定的参考价值。 展开更多
关键词 齿轮 点蚀 模式识别 深度卷积生成对抗网络(dcgan) U^(2)-Net
在线阅读 下载PDF
基于改进DCGAN的管道缺陷识别方法研究
9
作者 田野 张杰 +2 位作者 陈海艳 高富超 高涛 《化工设备与管道》 北大核心 2025年第1期89-95,共7页
油气管道定期检测评价是保障能源供应安全的重要手段,漏磁内检测技术是管道完整性评价的主要方法之一。由于管道漏磁检测获得样本数据的成本高昂,需要数据增强的方式对数据集进行有效扩充。为了解决原始漏磁数据增强过程中数据生成质量... 油气管道定期检测评价是保障能源供应安全的重要手段,漏磁内检测技术是管道完整性评价的主要方法之一。由于管道漏磁检测获得样本数据的成本高昂,需要数据增强的方式对数据集进行有效扩充。为了解决原始漏磁数据增强过程中数据生成质量较差的问题,提出了一种改进的深度卷积对抗网络数据增强方法。首先,将原始的漏磁数据经过处理生成漏磁图像,然后将传统的生成对抗网络与深度卷积相结合(DCGAN)并改进,进行数据增强,得到改进后的DCGAN网络。与传统数据增强方法相比,该方法有效地减少了网络训练样本的数量,提高了生成数据的质量。利用该方法进行训练得到的图像与原始漏磁图像按一定比例共同作为数据集带入卷积神经网络CNN中,训练后的管道缺陷识别准确率比仅使用原始图像进行训练后的结果提升了3.9%,有效地提高了管道缺陷识别的准确性。 展开更多
关键词 漏磁内检测 深度卷积对抗网络(dcgan) 卷积神经网络(CNN) 缺陷识别
在线阅读 下载PDF
MACDCGAN的发电机轴承故障诊断方法 被引量:1
10
作者 曹洁 尹浩楠 王进花 《振动与冲击》 EI CSCD 北大核心 2024年第11期227-235,共9页
在实际工况中,发电机中传感器采集到的故障样本数据有限,使用基于深度学习的方法进行故障诊断存在过拟合问题导致模型泛化能力较差以及诊断精度不高。为了解决这个问题,采用样本扩充的思路,提出了一种改进的辅助分类器条件深度卷积生成... 在实际工况中,发电机中传感器采集到的故障样本数据有限,使用基于深度学习的方法进行故障诊断存在过拟合问题导致模型泛化能力较差以及诊断精度不高。为了解决这个问题,采用样本扩充的思路,提出了一种改进的辅助分类器条件深度卷积生成对抗网络(MACDCGAN)的故障诊断方法。通过对采集的一维时序信号进行小波变换增强特征,构建简化结构参数的条件深度卷积生成对抗网络模型生成样本,并在模型中采用Wasserstein距离优化损失函数解决训练过程中存在模式崩塌和梯度消失的缺点;通过添加一个独立的分类器来改进分类模型的兼容性,并在分类器中引入学习率衰减算法增加模型稳定性。试验结果表明,该方法可以有效地提高故障诊断的精度,并且验证了所提模型具有良好的泛化性能。 展开更多
关键词 发电机 特征提取 生成对抗网络(GAN) 卷积神经网络(CNN) 故障诊断
在线阅读 下载PDF
基于改进DCGAN的对地观测图像生成方法 被引量:1
11
作者 黄丹丹 汪梅 +3 位作者 张永高 施俊杰 张岩 李远成 《西安科技大学学报》 CAS 北大核心 2024年第5期985-995,共11页
为了研究无人机对地观测图像样本的平衡性,提高对地观测在深度学习中的应用,采用图像生成方法对无人机对地观测图像进行大量生成;针对图像生成模型在训练时出现的稳定性和生成图像的质量问题,提出一种基于改进DCGAN的对地观测图像生成... 为了研究无人机对地观测图像样本的平衡性,提高对地观测在深度学习中的应用,采用图像生成方法对无人机对地观测图像进行大量生成;针对图像生成模型在训练时出现的稳定性和生成图像的质量问题,提出一种基于改进DCGAN的对地观测图像生成方法。首先在DCGAN的生成器和判别器的网络结构中增加批处理层,然后将判别器的优化器改进为随机梯度下降,且生成器的优化器采用自适应学习率,最后改进模型的损失函数。结果表明:改进后的DCGAN网络模型生成的数据与原始数据的统计特征相似,模型性能良好,相比于其他的GAN衍生模型,改进后的DCGAN模型更具有稳定性,在训练过程中未出现模式崩塌的现象,模型生成图像的FID分数值为4.631,比原始DCGAN模型低2.409,该方法生成的图像质量更好,更加适用大规模的对地观测图像数据的生成。 展开更多
关键词 对地观测 深度卷积生成对抗网络 深度学习 图像生成
在线阅读 下载PDF
基于DCGAN算法的服装效果图生成方法 被引量:2
12
作者 郭宇轩 孙林 《毛纺科技》 CAS 北大核心 2024年第2期114-120,共7页
为了提高服装设计效率,适应时尚产品迭代加速的趋势,提出一种基于深度卷积对抗网络(DCGAN)的服装效果图生成方法。搭建适用于服装效果图生成任务的DCGAN模型,制作服装秀场数据集进行模型训练并生成服装效果图,设计师主观筛选具有设计参... 为了提高服装设计效率,适应时尚产品迭代加速的趋势,提出一种基于深度卷积对抗网络(DCGAN)的服装效果图生成方法。搭建适用于服装效果图生成任务的DCGAN模型,制作服装秀场数据集进行模型训练并生成服装效果图,设计师主观筛选具有设计参考价值的生成服装效果图,计算有效生成图像比例,评估该模型性能和生成图像质量,通过人机交互的方式优化部分生成图像并形成最终设计方案。结果表明:优化后的DCGAN模型可以快速提取流行趋势生成创意设计方案,辅助设计师高效完成设计效果表达,为服装设计的智能化提供有效途径和方法参考。 展开更多
关键词 卷积神经网络 dcgan 服装效果图 交互设计 深度学习
在线阅读 下载PDF
Deep-Dark-Net:一种基于生成对抗网络的导星相机暗流预测模型
13
作者 曲伯桓 杨贺珺 +14 位作者 何宇轩 郭远昊 刘宇 曹子皇 齐朝祥 于涌 王培培 赵永恒 张勇 王淑青 栗剑 吕冠儒 曹兴华 向铭 邱虹云 《天文学进展》 CSCD 北大核心 2024年第4期683-697,共15页
暗流会影响图像质量、降低星像的信噪比,进而影响星像位置和流量测量的精度,因此需要在天文数据处理中准确估计并去除暗流。LAMOST导星图像处理的需求为:在无暗场图像情况下高精度处理历史导星图像数据,简化导星相机暗场图像拍摄的步骤... 暗流会影响图像质量、降低星像的信噪比,进而影响星像位置和流量测量的精度,因此需要在天文数据处理中准确估计并去除暗流。LAMOST导星图像处理的需求为:在无暗场图像情况下高精度处理历史导星图像数据,简化导星相机暗场图像拍摄的步骤,可以利用导星图像的特性反演和生成高精度可靠的暗场图像。利用LAMOST导星原始数据的特性,提出一种基于生成对抗网络模型来精确估计暗流的新方法——Deep-Dark-Net。该方法利用条件生成对抗网络,构建导星图像Overscan区域、Optical Black区域与对应的有效成像区域噪声之间的关联模型,从而通过这些区域反演和重构高精度暗场图像。实验表明:Deep-Dark-Net预测的暗流与真实暗流的符合度高于传统方法,满足了LAMOST望远镜导星图像处理对暗场图像的需求。该工作不仅为天文图像暗流的处理提供了一种新思路、新方法,也为深度学习技术在天文图像处理中的潜在价值和应用方向提供了重要的视角和示例。 展开更多
关键词 暗流 深度学习 条件生成对抗网络 deep-Dark-Net LAMOST
在线阅读 下载PDF
基于DCGAN的紫外像增强器视场瑕疵图片的生成
14
作者 丁习文 程宏昌 +3 位作者 苏悦 闫磊 杨晔 党小刚 《红外技术》 CSCD 北大核心 2024年第5期608-616,共9页
传统数据增强方法容易过拟合,为了解决紫外像增强器视场瑕疵图像数据集样本不平衡的问题,提升基于深度学习的条纹状瑕疵识别精度,提出了一种基于深度卷积生成对抗网络(Deep Convolution Generative Adversarial Network,DCGAN)的紫外像... 传统数据增强方法容易过拟合,为了解决紫外像增强器视场瑕疵图像数据集样本不平衡的问题,提升基于深度学习的条纹状瑕疵识别精度,提出了一种基于深度卷积生成对抗网络(Deep Convolution Generative Adversarial Network,DCGAN)的紫外像增强器视场瑕疵图像生成方法。通过对DCGAN进行损失函数的改进以及添加卷积注意力机制的优化,建立了紫外像增强器视场瑕疵图像生成模型,成功实现了紫外像增强器视场瑕疵图像的生成。随后,利用图像质量评价指标以及瑕疵检测模型来验证生成图像的有效性。实验结果显示,生成的紫外像增强器视场瑕疵图像可以满足使用需求,将生成图像融合到真实图像中再输入瑕疵检测模型可提高其检测精度。这一研究成果为三代微光像增强器和紫外像增强器的基于深度学习的视场瑕疵检测提供了技术支撑。 展开更多
关键词 紫外像增强器 视场瑕疵检测 深度学习 图像生成 对抗网络
在线阅读 下载PDF
基于改进生成对抗网络和Swin Transformer的样本不均衡轴承故障诊断 被引量:1
15
作者 马良玉 黄日灏 +3 位作者 段晓冲 胡景琛 高海天 马进 《南京信息工程大学学报》 北大核心 2025年第4期528-537,共10页
深度学习由于其强大的特征提取能力被广泛应用于故障诊断领域,但在实际生产过程中,故障样本数量通常远低于正常样本,从而导致故障诊断模型的分类准确率下降.为此,本文提出一种基于改进循环生成对抗网络和Swin Transformer的样本不均衡... 深度学习由于其强大的特征提取能力被广泛应用于故障诊断领域,但在实际生产过程中,故障样本数量通常远低于正常样本,从而导致故障诊断模型的分类准确率下降.为此,本文提出一种基于改进循环生成对抗网络和Swin Transformer的样本不均衡轴承故障诊断方法,并以旋转机械滚动轴承振动故障诊断为例对方法进行验证.首先,将原始振动信号的时频图作为循环生成对抗网络的输入;然后,为克服训练不稳定、模型不能及时收敛等问题,引入谱归一化和权值衰减,利用改进的循环生成对抗网络生成更多的故障样本;最后,采用Swin Transformer模型来进行故障诊断,并与随机森林(RF)、堆叠自编码器(SAE)、支持向量机(SVM)、卷积神经网络(CNN)进行对比.在美国凯斯西储大学(CWRU)轴承故障数据集进行多组不同的故障样本生成与故障诊断实验,结果表明,本文方法可以在训练样本数量较少时生成质量较高的合成样本,与其他方法相比,Swin Transformer模型故障诊断精度更高,在不平衡数据的故障诊断方面具有很大的潜力. 展开更多
关键词 滚动轴承 故障诊断 不平衡样本 循环生成对抗网络 深度学习
在线阅读 下载PDF
改进的GAN和迁移学习的轴承故障诊断方法 被引量:1
16
作者 郝旺身 冀科伟 +1 位作者 杜应军 韦广 《机械设计与制造》 北大核心 2025年第1期140-143,148,共5页
针对实际设备运行中轴承故障样本往往比较匮乏,传统的人工智能算法越来越难以满足实际情况故障诊断需要的问题,提出了一种改进的生成对抗神经网络模型,并结合迁移学习提出了一种智能故障诊断方法。该方法将机械故障时所采集的原始数据... 针对实际设备运行中轴承故障样本往往比较匮乏,传统的人工智能算法越来越难以满足实际情况故障诊断需要的问题,提出了一种改进的生成对抗神经网络模型,并结合迁移学习提出了一种智能故障诊断方法。该方法将机械故障时所采集的原始数据与大量源域数据通过生成对抗网络中得到大量与原始数据相似的新样本数据,然后从新样本数据中学习特征优化神经网络的参数,并通过样本的分布相应的调节神经网络的结构,最后,将部分原始故障数据输入已训练好的神经网络,得到诊断结果。实验结果表明,所提方法较传统的深度学习和迁移学习在诊断准确率上分别提高了28.10%和24.42%,能够为实际制造中轴承故障诊断任务提供可行的解决方案。 展开更多
关键词 轴承故障 样本生成 迁移学习 生成式对抗网络 卷积神经网络
在线阅读 下载PDF
基于SE-AdvGAN的图像对抗样本生成方法研究 被引量:1
17
作者 赵宏 宋馥荣 李文改 《计算机工程》 北大核心 2025年第2期300-311,共12页
对抗样本是评估深度神经网络(DNN)鲁棒性和揭示其潜在安全隐患的重要手段。基于生成对抗网络(GAN)的对抗样本生成方法(AdvGAN)在生成图像对抗样本方面取得显著进展,但该方法生成的扰动稀疏性不足且幅度较大,导致对抗样本的真实性较低。... 对抗样本是评估深度神经网络(DNN)鲁棒性和揭示其潜在安全隐患的重要手段。基于生成对抗网络(GAN)的对抗样本生成方法(AdvGAN)在生成图像对抗样本方面取得显著进展,但该方法生成的扰动稀疏性不足且幅度较大,导致对抗样本的真实性较低。为解决这一问题,基于AdvGAN提出一种改进的图像对抗样本生成方法(SE-AdvGAN)。SE-AdvGAN通过构造SE注意力生成器和SE残差判别器来提高扰动的稀疏性。SE注意力生成器用于提取图像关键特征,限制扰动生成位置,SE残差判别器指导生成器避免生成无关扰动。同时,在SE注意力生成器的损失函数中加入以l_(2)范数为基准的边界损失以限制扰动的幅度,从而提高对抗样本的真实性。实验结果表明,在白盒攻击场景下,SE-AdvGAN相较于现有方法生成的对抗样本扰动稀疏性更高、幅度更小,并且在不同目标模型上均取得了更好的攻击效果,说明SE-AdvGAN生成的高质量对抗样本可以更有效地评估DNN模型的鲁棒性。 展开更多
关键词 对抗样本 生成对抗网络 稀疏扰动 深度神经网络 鲁棒性
在线阅读 下载PDF
基于域自适应对抗生成样本的金属损伤导波智能迁移识别方法
18
作者 王莉 刘国强 +2 位作者 杨宇 张超 裘进浩 《振动与冲击》 北大核心 2025年第3期191-201,209,共12页
针对工程场景下缺乏大量标注完备的真实损伤样本,而难以学习到可用的智能诊断模型的难题,该文提出了一种基于域自适应对抗生成样本的金属损伤导波智能迁移诊断方法。首先,采用有限元仿真得到了大量标签丰富的模拟损伤导波监测数据;然后... 针对工程场景下缺乏大量标注完备的真实损伤样本,而难以学习到可用的智能诊断模型的难题,该文提出了一种基于域自适应对抗生成样本的金属损伤导波智能迁移诊断方法。首先,采用有限元仿真得到了大量标签丰富的模拟损伤导波监测数据;然后,采用生成对抗神经网络(wasserstein Generative adversarial networks with gradient penalty,WGAN-GP)实现了模拟损伤监测样本至真实损伤的域自适应对抗样本的生成;最后,构建了基于对抗生成样本的损伤智能诊断模型,实现了对未知标签真实损伤监测样本的高可靠分类诊断。金属开孔结构疲劳裂纹导波监测试验验证结果表明,所提方法可实现模拟损伤导波识别知识至疲劳损伤的跨域迁移,且在无真实损伤标注样本时也可实现对裂纹损伤的高精度智能识别。 展开更多
关键词 疲劳裂纹 导波 生成对抗神经网络(WGAN-GP) 卷积神经网络 迁移学习
在线阅读 下载PDF
基于对抗学习和增强优化的深度转换语音还原方法
19
作者 苏兆品 周晓琳 +3 位作者 张国富 廉晨思 王年松 岳峰 《电子学报》 北大核心 2025年第6期1815-1828,共14页
语音转换(Voice Conversion,VC)是一种采用深度学习将源说话人声音转换为目标说话人声音的人工智能技术,不仅被广泛应用于电影配音、个性化语音定制等,也被恶意分子应用于电信诈骗、身份伪造、政治社会操纵等,给个人隐私、社会稳定乃至... 语音转换(Voice Conversion,VC)是一种采用深度学习将源说话人声音转换为目标说话人声音的人工智能技术,不仅被广泛应用于电影配音、个性化语音定制等,也被恶意分子应用于电信诈骗、身份伪造、政治社会操纵等,给个人隐私、社会稳定乃至国家安全带来严重危害.相比较于深度转换语音的检测,如何由深度转换语音恢复出源说话声音,即深度转换语音还原,对追踪真实说话人,防止VC非法使用,具有更重要的研究意义和实用价值.而目前相关的研究还较少.为此,本文提出了一种基于对抗学习和增强优化的深度转换语音还原方法.具体来说,首先分析了深度转换语音与源语音和目标语音的相似度,提出基于初步还原-增强优化的深度转换语音还原框架.其次,基于动态卷积和注意力机制设计对抗还原网络,通过生成器、分类器和鉴别器的对抗学习,从转换语音中学习尽可能多的源说话人信息.然后,设计包含音色提取器、内容提取器和声码器的增强优化网络,将初步还原语音中的音色信息和深度转换语音中的内容信息进行深度融合,生成优化后的还原语音.最后,在Free-VC、TriAAN-VC、BNE-PPG-VC三种高性能语音转换模型的数据集上验证所提方法的有效性.对比实验结果表明,本文方法针对三种语音转换模型的还原语音,在与真实语音的平均余弦相似度上分别提高了11.9、8.7和7.1个百分点,在说话人验证系统的平均等错率EER(Equal-Error-Rate)上分别降低了4.30、3.40和3.98个百分点,说明本文方法不仅可以有效恢复出源说话人语音,而且对未知深度转换语音也有一定的适用性. 展开更多
关键词 语音转换 深度转换语音 还原语音 对抗学习 增强优化 深度神经网络
在线阅读 下载PDF
地震属性驱动的条件生成对抗网络沉积微相模型构建
20
作者 刘昕 孙胜 +3 位作者 张立强 蔡明俊 鲁玉 卢文娟 《中国石油大学学报(自然科学版)》 北大核心 2025年第4期1-10,共10页
由于地层结构的复杂性和强非均质性,同时受到测井、岩心、试油等数据不足的影响,现有沉积微相建模方法难以实现精确建模。提出一种基于条件生成对抗网络的沉积微相建模方法,采用灰色关联分析算法,计算各地震属性与砂地比的灰色关联度,... 由于地层结构的复杂性和强非均质性,同时受到测井、岩心、试油等数据不足的影响,现有沉积微相建模方法难以实现精确建模。提出一种基于条件生成对抗网络的沉积微相建模方法,采用灰色关联分析算法,计算各地震属性与砂地比的灰色关联度,挖掘对砂地比参数关联性较强的参数;将优选地震属性图像作为卷积神经网络模型的输入,构建砂地比预测模型,可视化砂地比预测结果,与井相图作为联合约束条件,训练条件生成对抗网络,构建沉积微相生成模型,实现沉积微相的精确建模。应用本方法对东部某油田进行沉积微相建模研究。结果表明,条件生成对抗网络沉积微相模型能精确刻画复杂地质模式,井点吻合率达到94.1%。 展开更多
关键词 条件生成对抗网络 深度学习 沉积微相 砂地比 灰色关联 卷积神经网络
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部