期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Real-time UAV path planning based on LSTM network 被引量:2
1
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(LSTM)
在线阅读 下载PDF
利用混合深度学习算法的时空风速预测 被引量:1
2
作者 贵向泉 孟攀龙 +2 位作者 孙林花 秦三杰 刘靖红 《太阳能学报》 北大核心 2025年第3期668-678,共11页
风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLS... 风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLSTM)来预测高频分量;使用自适应图时空Transformer网络(ASTTN)来预测低频分量,以充分考虑输入序列的时空相关性。最后将高频分量和低频分量合并叠加,得到最终的预测结果。将该模型应用于甘肃省某风电场进行风速预测,实验结果表明,所提出混合深度学习模型能有效提高风速预测的准确性。 展开更多
关键词 风速 预测 深度学习 图卷积神经网络 双向长短期记忆网络 自适应图时空Transformer
在线阅读 下载PDF
基于小波降噪与WOA⁃Bi⁃LSTM的短时交通流预测
3
作者 贾现广 苏治文 +1 位作者 冯超琴 吕英英 《现代电子技术》 北大核心 2025年第14期77-84,共8页
交通流数据中异常数据波动作为噪声,会对模型训练收敛以及预测精度产生不利影响。为解决该问题,引入两种不同阈值函数的小波阈值去噪方法对交通流数据进行降噪处理,将小波阈值去噪(WD)、鲸鱼优化算法(WOA)和双向长短期记忆网络(Bi-LSTM... 交通流数据中异常数据波动作为噪声,会对模型训练收敛以及预测精度产生不利影响。为解决该问题,引入两种不同阈值函数的小波阈值去噪方法对交通流数据进行降噪处理,将小波阈值去噪(WD)、鲸鱼优化算法(WOA)和双向长短期记忆网络(Bi-LSTM)相结合,提出一种WD-WOA-Bi-LSTM方法。首先,将两种方法降噪后的交通流数据进行对比,并将降噪效果更好的数据进行归一化处理、数据集划分以及数据维度转换;然后,通过WOA对Bi-LSTM部分超参数进行寻优,迭代至最优适应度的超参数组合,并用于构建Bi-LSTM;最后,应用英格兰公路交通流数据验证所提模型。结果表明:WDWOA-Bi-LSTM方法相较WOA-Bi-LSTM和WD-Bi-LSTM,RMSE降低12.5004%和3.9789%;MAE降低21.7350%和4.7225%;MAPE降低38.5647%和10.8652%。该模型相比其他模型评价指标均为最低,具有较高的预测精度,可以为高精度的短时交通流预测提供参考。 展开更多
关键词 智能交通 短时交通流预测 小波阈值去噪 鲸鱼优化算法 双向长短期记忆网络 深度学习 超参数寻优
在线阅读 下载PDF
谐波减速器失效预警方法研究
4
作者 李彬 陶建峰 +1 位作者 刘成良 贡亮 《机械设计与制造》 北大核心 2025年第3期281-287,292,共8页
谐波减速器是工业机器人的核心部件。在其运行过程中,功率信号是表征谐波减速器运行状态的关键参数,因此实时准确地预测谐波减速器功率,对于其失效预警具有指导性意义。提出了基于CNN和BiLSTM的混合深层神经网络(DCBNN),用于处理谐波减... 谐波减速器是工业机器人的核心部件。在其运行过程中,功率信号是表征谐波减速器运行状态的关键参数,因此实时准确地预测谐波减速器功率,对于其失效预警具有指导性意义。提出了基于CNN和BiLSTM的混合深层神经网络(DCBNN),用于处理谐波减速器状态监测数据从而准确地预测其功率信号。首先,对测得的运行参数进行数据预处理,并划分好数据集。然后,将分割好的数据集输入到DCBNN中,利用CNN和BiLSTM分支提取状态监测数据的空间特征和双向时序依赖。在此基础上,根据预测结果获得功率实际值和预测值残差的绝对值,利用概率论分布拟合方法拟合残差曲线,以获得谐波减速器失效预警的警报阈值。最后,使用谐波减速器实验数据构建的8个不同数据集来验证所提方法的有效性和优越性。在完整数据集上的试验结果表明,DCBNN模型可以有效的对谐波减速器进行失效预警。 展开更多
关键词 失效预警 谐波减速器 功率预测 卷积神经网络 双向长短期记忆神经网络 深度学习
在线阅读 下载PDF
基于CNN-BiLSTM-Attention模型的胡麻产量预测
5
作者 李星宇 李玥 高玉红 《江苏农业学报》 北大核心 2025年第7期1342-1349,共8页
本研究提出了一种用于胡麻产量预测的基于深度学习方法的卷积神经网络(CNN)-双向长短期记忆网络(BiLSTM)-注意力机制(Attention)模型,该模型整合了卷积神经网络的空间特征提取能力、双向长短期记忆网络的时序动态建模能力以及注意力机... 本研究提出了一种用于胡麻产量预测的基于深度学习方法的卷积神经网络(CNN)-双向长短期记忆网络(BiLSTM)-注意力机制(Attention)模型,该模型整合了卷积神经网络的空间特征提取能力、双向长短期记忆网络的时序动态建模能力以及注意力机制的特征自适应加权功能。基于气候数据、植被指数和2000-2020年产量对模型进行训练。试验结果表明,CNN-BiLSTM-Attention模型预测精度显著优于传统模型,其均方根误差(RMSE)达到316.98 kg/hm^(2),决定系数(R^(2))达到0.83。该模型在年际气候变化条件下保持了良好的稳定性和较高的精确度。本研究为胡麻产量预测提供了技术支持,其模块化设计框架还可推广应用于其他作物的生长监测与产量预估。 展开更多
关键词 胡麻 产量预测 深度学习 卷积神经网络 双向长短期记忆模型
在线阅读 下载PDF
基于卷积复运算和神经网络的调制识别方法
6
作者 李丽文 鲁进 刘浩 《计算机工程与设计》 北大核心 2025年第8期2211-2218,共8页
针对现有的调制识别研究存在的低信噪比下识别率低、算法的特征单一、缺乏互补信息等问题,提出了基于卷积复运算网络的多融合调制识别方法。提取幅度/相位的复数特征,与同相/正交的互补特征进行融合,送入多层残差网络中对融合特征进行... 针对现有的调制识别研究存在的低信噪比下识别率低、算法的特征单一、缺乏互补信息等问题,提出了基于卷积复运算网络的多融合调制识别方法。提取幅度/相位的复数特征,与同相/正交的互补特征进行融合,送入多层残差网络中对融合特征进行充分挖掘,再由双向长短期记忆网络聚合上下文信息,并设计了通道和空间注意力网络来捕捉关键特征。在RML2018.01a上的实验结果表明,所提方法在信噪比为6 dB时的平均识别率为90.35%,优于其它深度学习方法,改善了高阶QAM调制的混淆情况。 展开更多
关键词 调制识别 深度学习 卷积复运算网络 多融合 残差网络 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
BiLSTM-Chan算法在超宽带室内定位中的应用
7
作者 赵辰瑞 连增增 +4 位作者 田亚林 贺刘辉 陈浩 王鹏辉 王孟奇 《测绘通报》 北大核心 2025年第5期100-105,共6页
针对UWB在室内定位中因人员走动引起的非视距误差(NLOS),以及常规神经网络训练后基站不能移动的问题,本文提出了一种基于融合双向长短期记忆神经网络的Chan算法(BiLSTM-Chan)。该算法首先通过双向长短期记忆神经网络处理UWB时序数据,给... 针对UWB在室内定位中因人员走动引起的非视距误差(NLOS),以及常规神经网络训练后基站不能移动的问题,本文提出了一种基于融合双向长短期记忆神经网络的Chan算法(BiLSTM-Chan)。该算法首先通过双向长短期记忆神经网络处理UWB时序数据,给出超宽带(UWB)时序数据的误差修正值,然后依靠Chan算法计算得到最终三维坐标。双向长短期记忆神经网络能够综合过去与未来的信息,更好地捕捉到时序数据中的特征信息。在网络中加入注意力机制能够帮助网络分析BiLSTM层提取的关键特征,让神经网络的预测更加准确。本文通过仿真试验和实测试验,对BiLSTM算法、Chan算法和最小二乘(LS)算法进行了对比。结果表明,相比于BiLSTM、Chan和LS算法,BiLSTM-Chan算法的精度分别提高了30.66%、61.78%和61.96%。 展开更多
关键词 室内定位 超宽带 双向长短期记忆神经网络 注意力机制 深度学习
在线阅读 下载PDF
针对非平稳信号和高频噪声的自适应噪声完整集成经验模态分解-双向长短期记忆风功率预测模型
8
作者 万思洋 杨苹 +3 位作者 崔嘉雁 李丰能 隗知初 陈文皓 《电网技术》 北大核心 2025年第3期1176-1184,I0085,共10页
提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高... 提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高风电功率预测的准确性和鲁棒性。当前风电功率预测面临非平稳信号和高频噪声的问题,影响了预测的准确性。针对这一问题,通过CEEMDAN分解,将复杂的非平稳信号分解为多个固有模态函数分量(intrinsic mode function,IMF),在此基础上创新性地通过平均波动幅度(average fluctuation range,AFR)计算IMF的平均波动幅度进行高低频划分,应用经验小波变换(empirical wavelet transform,EWT)对高频分量进行滤波,显著降低信号中的高频噪声,提高数据准确性。随后,分别对高频和低频分量建立Bi-LSTM模型,选取最优参数进行训练和预测,将各分量的预测结果叠加得到最终的风电功率预测值。模型经过不同季节和数据集的验证,展示了其在风电功率预测中的通用性和鲁棒性。研究证明,结合CEEMDAN分解、AFR划分和EWT滤波,通过有效的噪声抑制和数据分解,能够显著提升风电功率预测的准确性和稳定性,弥补了传统方法在处理非平稳信号和高频噪声方面的不足。 展开更多
关键词 风电功率预测 双向长短期记忆神经网络 完全集成经验模态分解 经验小波变换 深度学习
在线阅读 下载PDF
矿用电机车混合储能系统功率分配控制
9
作者 尹昊 祝龙记 《工矿自动化》 北大核心 2025年第5期114-119,154,共7页
单一蓄电池供电的矿用电机车存在续航里程不足、充电时间长、重载启动困难等问题,导致运行效率低,难以满足安全性与稳定性要求。提出在矿用电机车上采用铅酸蓄电池与超级电容的混合储能技术,设计了矿用电机车混合储能系统,以满足重载启... 单一蓄电池供电的矿用电机车存在续航里程不足、充电时间长、重载启动困难等问题,导致运行效率低,难以满足安全性与稳定性要求。提出在矿用电机车上采用铅酸蓄电池与超级电容的混合储能技术,设计了矿用电机车混合储能系统,以满足重载启动时高瞬时功率要求,增加续航时间。针对混合储能系统中储能元件的功率分配问题,通过仿真分析低通滤波与小波分解的优缺点,设计了低通滤波与小波分解相结合的功率分解方法,从矿用电机车总负载功率中分解出高低频分量;再根据储能元件的荷电状态(SOC),引入动态协调机制,对储能元件功率分配进行二次调控,得到蓄电池和超级电容的目标功率。仿真结果表明:应用组合分解方法得到的矿用电机车总负载功率的低频分量与原始功率的吻合度较高,瞬态响应性能优越;基于SOC的二次调控策略可动态调整混合储能系统的功率分配,减少了超级电容放电次数,增加了超级电容有效放电时间,使蓄电池稳定放电。 展开更多
关键词 矿用电机车 混合储能 功率分配 铅酸蓄电池 超级电容
在线阅读 下载PDF
基于Multi-Head Attention机制优化的Bi-LSTM模型河道汇流模拟
10
作者 程帅 张娟 +2 位作者 李晓琳 杨默远 沈建明 《水文》 北大核心 2025年第2期80-87,共8页
为有效提取河道径流时间序列信息特征,提高河道汇流过程模拟预测的非线性拟合能力,构建一种融合双向长短期记忆网络(Bi-LSTM)、多头注意力机制(Multi-Head Attention)、前馈神经网络(FFNN)的河道汇流预测模型(MABLFN)。为验证MABLFN模... 为有效提取河道径流时间序列信息特征,提高河道汇流过程模拟预测的非线性拟合能力,构建一种融合双向长短期记忆网络(Bi-LSTM)、多头注意力机制(Multi-Head Attention)、前馈神经网络(FFNN)的河道汇流预测模型(MABLFN)。为验证MABLFN模型有效性,以永定河山峡段典型站点实测数据开展实例验证,并将预测结果与单一的LSTM、Bi-LSTM模型和具有物理机制的MIKE11模型预测结果进行对比分析,评估模型不同预报时长径流过程预测性能。结果表明:MABLFN模型能够较好地预测河道径流,MABLFN模型相比于LSTM模型、Bi-LSTM模型和MIKE11模型的RMSE降低了1%~52%,NSE提高了8%~9%;在计算效率方面MABLFN模型相比于LSTM模型、Bi-LSTM模型计算耗时由0.26 s增加至1.2 s,相比于MIKE11模型(360 s)计算耗时明显降低。 展开更多
关键词 河道汇流演算 双向长短期记忆网络 多头注意力机制 深度学习
在线阅读 下载PDF
基于EWBiLSTM-ATT的数据手套手语识别
11
作者 武东辉 王金凤 +1 位作者 仇森 刘国志 《计算机工程》 北大核心 2025年第8期107-119,共13页
手语识别近年来受到广泛关注,但现有手语识别模型存在训练时间长和计算成本高的问题。为此,基于穿戴式数据手套提出一种融合注意力机制的首层宽卷积核扩展深度卷积神经网络(EWDCNN)和双向长短期记忆网络(BiLSTM)的混合深度学习方法——E... 手语识别近年来受到广泛关注,但现有手语识别模型存在训练时间长和计算成本高的问题。为此,基于穿戴式数据手套提出一种融合注意力机制的首层宽卷积核扩展深度卷积神经网络(EWDCNN)和双向长短期记忆网络(BiLSTM)的混合深度学习方法——EWBiLSTM-ATT模型。首先通过加宽首层卷积层来减少模型参数量,提升计算速度,通过扩展WDCNN卷积层深度来提高模型自动提取手语特征的能力;其次引入BiLSTM作为时间建模器捕捉手语序列数据的时间动态信息,有效处理传感器数据中的时序关系;最后利用注意力机制通过映射加权和学习参数矩阵赋予BiLSTM隐含状态不同权重,通过计算每个时间段的注意力权重,模型自动选择与手势动作相关的关键时间段。以STM32F103为主控模块,以MPU6050与Flex Sensor 4.5传感器为核心搭建数据手套手语采集平台。选取16种动态手语动作用于构建GR-Dataset数据训练模型。同一实验条件下,EWBiLSTM-ATT准确率为99.40%,相对于CLT-net、CNN-GRU、CLA-net、CNN-GRU-ATT模型分别提升10.36、8.41、3.87、3.05百分点,训练总时间分别缩减至这4种对比模型的57%、61%、55%、56%。 展开更多
关键词 扩展深度卷积神经网络 双向长短期记忆网络 注意力模块 手语识别 数据手套 深度学习
在线阅读 下载PDF
一种兼容海洋环境的改进Transformer声呐探测效能快速预报模型
12
作者 汪晶晗 陈欢 +1 位作者 金宇琦 兰朝凤 《声学技术》 北大核心 2025年第2期164-170,共7页
为提升高复杂海洋环境下声呐探测距离预测的准确性和效率,文章提出一种基于改进Transformer的传播损失与声呐探测距离建模方法,该方法能够兼容复杂海洋环境下不同点位、不同方向声信号传播损失差异,能够基于声呐方程及声呐主被动工作模... 为提升高复杂海洋环境下声呐探测距离预测的准确性和效率,文章提出一种基于改进Transformer的传播损失与声呐探测距离建模方法,该方法能够兼容复杂海洋环境下不同点位、不同方向声信号传播损失差异,能够基于声呐方程及声呐主被动工作模式,快速、有效地预测多点位多方向的声呐探测距离。以真实大区域海洋环境计算得到的传播损失数据为输入,通过将双向长短时记忆网络(bidirectional long short-term memory,Bi-LSTM)与Transformer架构中自注意力机制相结合,使得模型能够有效捕捉复杂环境变化的局部精确性和全局特征。实验结果表明,所提模型预测结果与声呐方程耦合积分方式得到的探测距离具有较好的一致性;同时计算效率提高了约1 000倍,提升了声呐性能的预报效率。 展开更多
关键词 声呐性能快速预测 深度学习 双向长短时记忆网络(Bi-LSTM) Transformer架构
在线阅读 下载PDF
基于多模态深度学习的充电硐室锂电池健康状态预测
13
作者 赵应华 陈安碧 +2 位作者 张增誉 李文中 韩宇 《工矿自动化》 北大核心 2025年第5期120-128,共9页
在井下多尘、潮湿且易爆的环境中,锂电池的退化过程往往呈现非线性、多阶段的特点,传统的单一模型难以全面捕捉其动态变化。针对该问题,提出一种基于多模态深度学习的充电硐室锂电池健康状态预测方法。构建了多模态深度学习网络模型TCN−... 在井下多尘、潮湿且易爆的环境中,锂电池的退化过程往往呈现非线性、多阶段的特点,传统的单一模型难以全面捕捉其动态变化。针对该问题,提出一种基于多模态深度学习的充电硐室锂电池健康状态预测方法。构建了多模态深度学习网络模型TCN−BiLSTM−Transformer。该模型通过多层级特征提取机制实现时序信号的高效处理:时间卷积网络(TCN)采用具有指数扩展率的空洞卷积核,在保持时序完整性的同时捕获多尺度局部特征;双向长短期记忆网络(BiLSTM)通过双向门控循环单元(GRU)建立时序双向依赖关系,有效识别电池退化过程中的正反向退化特征;Transformer层则通过多头自注意力机制动态分配特征权重,实现全局退化模式的关键特征聚焦。通过锂电池工作过程中的多源传感数据(电压、电流和温度等)作为健康状态表征指标,通过Pearson相关性分析评估健康指标与电池容量的关联性,确定5个间接健康因子并作为预测模型的输入。实验结果表明,该方法的相关度均在98%以上,且均方误差、均方根误差、平均绝对误差、平均绝对百分比误差均较小。在煤矿防爆锂电池模拟工况应用验证中,该方法的相关度达99.47%,与传统方法的预测结果相比,波动幅度更小,精度更高。 展开更多
关键词 防爆锂电池 健康状态预测 多模态深度学习 时间卷积网络 双向长短期记忆网络 TCN−BiLSTM−Transformer
在线阅读 下载PDF
CNN A-BLSTM network的双人交互行为识别 被引量:5
14
作者 赵挺 曹江涛 姬晓飞 《电子测量与仪器学报》 CSCD 北大核心 2021年第11期100-107,共8页
关节点数据结合卷积神经网络用于双人交互行为识别存在图像化过程中对交互信息表达不充分且不能有效建模时序关系问题,而结合循环神经网络中存在侧重于对时间信息的表示却忽略了双人交互空间结构信息构建的问题。为此提出一种新的卷积... 关节点数据结合卷积神经网络用于双人交互行为识别存在图像化过程中对交互信息表达不充分且不能有效建模时序关系问题,而结合循环神经网络中存在侧重于对时间信息的表示却忽略了双人交互空间结构信息构建的问题。为此提出一种新的卷积神经网络结合加入注意机制的双向长短时期记忆网络(CNN A-BLSTM)模型。首先对每个人的关节点采用基于遍历树结构进行排列,然后对视频中的每一帧数据构建交互矩阵,矩阵的中的数值为排列后双人之间所有的关节点坐标间的欧氏距离,将矩阵进行灰度图像编码后所得图像依次送入CNN中提取深层次特征得到特征序列,然后将所得序列送入A-BLSTM网络中进行时序建模,最后送入Softmax分类器得到识别结果。将新模型用于NTU RGB D数据集中的11类双人交互行为的识别,其准确率为90%,高于目前的双人交互行为识别算法,验证了该模型的有效性和良好的泛化性能。 展开更多
关键词 双人交互行为识别 深度学习 卷积神经网络 双向长短时期记忆网络 注意机制
在线阅读 下载PDF
基于RF-BiLSTM模型的河流水质预测 被引量:9
15
作者 兰小机 贺永兰 武帅文 《长江科学院院报》 CSCD 北大核心 2024年第7期57-63,71,共8页
水环境中过量的氮、磷和高锰酸盐会对流域造成严重污染,准确预测这三类指标的含量对流域污染治理具有重要意义。然而,现有的模型预测精度低,输入因子的选择缺乏数理依据。基于此,以邕江为研究区域,提出一种RF-BiLSTM的混合网络模型。该... 水环境中过量的氮、磷和高锰酸盐会对流域造成严重污染,准确预测这三类指标的含量对流域污染治理具有重要意义。然而,现有的模型预测精度低,输入因子的选择缺乏数理依据。基于此,以邕江为研究区域,提出一种RF-BiLSTM的混合网络模型。该模型具有利用RF算法提取水质指标最优特征和利用BiLSTM模型提取输入数据的时间特征的优势,采用先降维后预测的方式对TN、TP和COD Mn进行预测,并将深度学习中的CNN、LSTM、BiLSTM和RF-LSTM作为基准模型与本研究所提模型作对比研究。研究结果表明,本研究模型预测TN、TP和COD Mn的平均绝对百分比误差(MAPE)分别达到了4.330%、6.781%和7.384%,均低于其他基准模型,预测结果具有较高的准确性和实用性,可为水环境的污染治理提供有效的技术支持。 展开更多
关键词 水质预测 特征选择 随机森林 双向长短时记忆神经网络 深度学习
在线阅读 下载PDF
基于LSTM-Attention和CNN-BiGRU误差修正的光伏功率预测 被引量:3
16
作者 吐松江·卡日 雷柯松 +2 位作者 马小晶 吴现 余凯峰 《太阳能学报》 CSCD 北大核心 2024年第12期85-93,共9页
为有效分析与利用光伏功率预测模型中以特定规律分布的预测误差,提出基于LSTM-Attention和CNN-BiGRU误差修正的光伏功率预测模型。首先,引入注意力机制(Attention)弥补输入序列长时长短期记忆网络(LSTM)难以保留关键信息的不足,建立LSTM... 为有效分析与利用光伏功率预测模型中以特定规律分布的预测误差,提出基于LSTM-Attention和CNN-BiGRU误差修正的光伏功率预测模型。首先,引入注意力机制(Attention)弥补输入序列长时长短期记忆网络(LSTM)难以保留关键信息的不足,建立LSTM-Attention的预测模型对光伏功率进行初步预测。其次,将卷积神经网络(CNN)在非线性特征提取上的优势与双向门控循环单元(BiGRU)在防止多种特征相互干扰的优势相结合,搭建CNN-BiGRU误差预测模型对可能产生的误差进行预测,从而对初步预测结果进行修正。经过实例分析表明:与未经误差修正的预测结果进行对比,经CNN-BiGRU误差预测模型进行误差修正后在不同天气类型中均能有效提高预测精度。 展开更多
关键词 光伏功率预测 深度学习 误差修正 注意力机制 长短期神经网络 双向门控循环单元
在线阅读 下载PDF
基于Bi-LSTM的浅层地下双孔洞探测技术 被引量:2
17
作者 梁靖 张红 +3 位作者 叶晨 周立成 刘泽佳 汤立群 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第6期778-783,共6页
文章探究一种基于深度学习的浅层地下孔洞探测技术,以应对地下孔洞给桩基施工安全所造成的严重威胁。基于浅层地震反射波法的原理,采用基础施工过程中的桩锤激震作为激励源,通过在探测区域地表上布置少量加速度传感器采集孔洞反射信号,... 文章探究一种基于深度学习的浅层地下孔洞探测技术,以应对地下孔洞给桩基施工安全所造成的严重威胁。基于浅层地震反射波法的原理,采用基础施工过程中的桩锤激震作为激励源,通过在探测区域地表上布置少量加速度传感器采集孔洞反射信号,并将反射信号作为深度学习的输入,以输出孔洞信息,建立一种新型的智能孔洞探测方法。结果表明,双向长短期记忆神经网络(bidirectional long short-term memory neural network,Bi-LSTM)的预测模型对于地下双孔洞的工况具有较高的识别准确率,在容许误差为2 m的情况下,孔洞位置和直径的预测准确率可达95.3%。该研究验证了基于深度学习的多孔洞探测技术的可行性,有望为施工前期土层地质状况的评估提供技术保障。 展开更多
关键词 地下孔洞探测 桩锤激震 深度学习 双向长短期记忆神经网络(Bi-LSTM) 有限元仿真
在线阅读 下载PDF
一种用于Bi-LSTM神经网络信号识别的DO-CAB算法 被引量:1
18
作者 花国祥 汤炼海 +2 位作者 李伟伟 李鹏 孙炎 《光通信技术》 北大核心 2024年第6期23-27,共5页
针对双向工频通信系统(TWACS)存在上行信号识别准确率不足的问题,提出一种基于蒲公英优化(DO)算法的联合卷积神经网络(CNN)与注意力机制(AM)的双向长短时记忆(Bi-LSTM)神经网络信号识别算法,简称DO-CAB算法。该算法首先通过CNN自适应提... 针对双向工频通信系统(TWACS)存在上行信号识别准确率不足的问题,提出一种基于蒲公英优化(DO)算法的联合卷积神经网络(CNN)与注意力机制(AM)的双向长短时记忆(Bi-LSTM)神经网络信号识别算法,简称DO-CAB算法。该算法首先通过CNN自适应提取TWACS信号重要特征,然后使用DO算法优化Bi-LSTM超参数,根据优化的超参数构建网络,并引入AM赋予输入影响权重,以获得更好信号识别效果。实验结果表明,所提算法的识别准确率达到92.32%,能高效、准确识别TWACS调制信号。 展开更多
关键词 双向工频通信系统 蒲公英优化算法 双向长短时记忆网络 深度学习 信号检测
在线阅读 下载PDF
基于多尺度特征融合的航空发动机剩余寿命预测 被引量:3
19
作者 秦子轩 张晓东 +1 位作者 白广芝 任先聪 《航空发动机》 北大核心 2024年第4期114-120,共7页
针对航空发动机原始数据中存在多样化退化信息及大量噪声干扰的问题,建立了一种基于多尺度特征融合的发动机剩余可用寿命(RUL)预测模型。构建了一种基于统计量的方法来降低原始数据中的噪声干扰;基于卷积双向长短期记忆网络(ConvBiLSTM... 针对航空发动机原始数据中存在多样化退化信息及大量噪声干扰的问题,建立了一种基于多尺度特征融合的发动机剩余可用寿命(RUL)预测模型。构建了一种基于统计量的方法来降低原始数据中的噪声干扰;基于卷积双向长短期记忆网络(ConvBiLSTM)和多头注意力机制(Multi-Attention)设计了加权时空特征提取模块(WSTFEM);采用多尺度学习策略,构建多尺度卷积双向长短期记忆网络(MCBLSTM)提取数据在不同时间尺度下的加权时空特征;提取数据手工特征为RUL预测提供具有针对性和解释性的退化信息;将上述特征进行特征融合后输入至全连接网络获得RUL预测值。以FD004子集为例,使用C-MAPSS数据集对模型进行仿真试验验证。结果表明:MCBLSTM模型在4个子数据集上RUL预测精度更高。相较于BiLSTM,均方根误差减小了20.35%,非对称评分函数下降了54.76%。 展开更多
关键词 深度学习 多头注意力机制 多尺度卷积双向长短期记忆网络 剩余可用寿命 航空发动机
在线阅读 下载PDF
基于ISABO-IBiLSTM模型的刀具磨损预测方法 被引量:1
20
作者 曾浩 曹华军 董俭雄 《中国机械工程》 EI CAS CSCD 北大核心 2024年第11期1995-2006,共12页
针对现有的刀具磨损预测方法因为缺少优化算法及网络结构不完善而导致预测精度不高的问题,提出了一种将改进的减法优化器(SABO)算法和改进的双向长短时记忆(BiLSTM)网络相结合的刀具磨损状态预测模型(ISABO-IBiLSTM模型)。首先,采用截... 针对现有的刀具磨损预测方法因为缺少优化算法及网络结构不完善而导致预测精度不高的问题,提出了一种将改进的减法优化器(SABO)算法和改进的双向长短时记忆(BiLSTM)网络相结合的刀具磨损状态预测模型(ISABO-IBiLSTM模型)。首先,采用截断法、Hampel滤波法、改进的完全自适应噪声集合经验模态分解(ICEEMDAN)-改进的小波阈值降噪法对加速度振动信号与力信号数据进行预处理。然后,提取预处理后的信号数据的时域、频域、时频域特征,并通过斯皮尔曼和最大互信息相关系数筛选特征,构建模型的输入。最后,利用改进的SABO算法对改进后的BiLSTM网络进行参数寻优,基于所得到的优化参数训练网络实现磨损预测。实验数据分析结果表明,所提出的ISABO-IBiLSTM模型对刀具磨损量的预测精度为98.49%~98.83%,较BiLSTM模型、改进的BiLSTM模型、改进的卷积神经网络(ICNN)-BiLSTM模型有了较大的提高。 展开更多
关键词 刀具磨损预测 减法优化器算法 双向长短时记忆网络 信号处理 深度学习
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部