期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
融合滞后极限学习机的IDBiLSTM短时交通流预测 被引量:1
1
作者 张阳 王梓良 +2 位作者 姚芳钰 许浩越 杨书敏 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期39-46,共8页
深度学习短时交通流预测中,存在数据处理实时性较弱,以及算法对交通流数据的复用和修正能力不足导致预测性能较差的问题。针对这一问题,提出一种融合滞后极限学习机的深度双向长短时记忆神经网络短时交通流预测方法。首先,引入权值共享... 深度学习短时交通流预测中,存在数据处理实时性较弱,以及算法对交通流数据的复用和修正能力不足导致预测性能较差的问题。针对这一问题,提出一种融合滞后极限学习机的深度双向长短时记忆神经网络短时交通流预测方法。首先,引入权值共享机制对双向长短时记忆网络模型进行结构优化,在模型训练过程中不断进行权重更新和偏置更新,从而充分利用逆序逆转数据增强数据的复用和修正能力;其次,为了进一步提高算法实时性,引入极限学习机模型,并在其神经元激活函数中嵌入生物神经系统中的滞后参数进行优化,加速了运算效率,提升算法的整体实时性。实验结果表明:提出的方法预测精度和算法实时性均有提升,与经典方法CNN-BiLSTM和多元集合CNN-LSTM相比,平均绝对误差分别减少了6.82、6.47,计算速度分别提高了12、19 s,具备良好的短时交通流预测能力和实时性。 展开更多
关键词 交通工程 深度学习 双向长短时记忆神经网络 极限学习机 交通预测
在线阅读 下载PDF
利用混合深度学习算法的时空风速预测 被引量:1
2
作者 贵向泉 孟攀龙 +2 位作者 孙林花 秦三杰 刘靖红 《太阳能学报》 北大核心 2025年第3期668-678,共11页
风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLS... 风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLSTM)来预测高频分量;使用自适应图时空Transformer网络(ASTTN)来预测低频分量,以充分考虑输入序列的时空相关性。最后将高频分量和低频分量合并叠加,得到最终的预测结果。将该模型应用于甘肃省某风电场进行风速预测,实验结果表明,所提出混合深度学习模型能有效提高风速预测的准确性。 展开更多
关键词 风速 预测 深度学习 图卷积神经网络 双向长短期记忆网络 自适应图时空Transformer
在线阅读 下载PDF
基于用电量曲线和深度学习的非技术性损失检测与识别
3
作者 王云静 肖克宇 +3 位作者 曲正伟 韩晓明 董海艳 Popov Maxim Georgievitch 《电测与仪表》 北大核心 2025年第6期202-211,共10页
电网中的非技术性损失不仅对电力公司经济效益造成显著影响,同时也给系统的电能质量和运行安全带来严重威胁。而不法用户牟取利益的技术手段也日益复杂,使得传统的非技术性损失检测方式逐渐陷入局限。文章研究了基于用电量曲线实施用电... 电网中的非技术性损失不仅对电力公司经济效益造成显著影响,同时也给系统的电能质量和运行安全带来严重威胁。而不法用户牟取利益的技术手段也日益复杂,使得传统的非技术性损失检测方式逐渐陷入局限。文章研究了基于用电量曲线实施用电篡改行为的操作手段,总结了一系列用于生成虚假用电数据的篡改策略。基于用电量曲线提取获得电力用户的用电行为特征之后,采用双向长短期记忆网络将其与实施用电篡改行为的结果相关联。最后通过构建多层级的神经网络架构,利用深度学习解决用电特征序列的多分类问题。根据某区域实际用电数据进行的算例仿真显示,文章研究内容能够实现对非技术性损失的有效检测以及具体篡改策略的分类识别。 展开更多
关键词 非技术性损失 深度学习 用电量曲线 双向长短期记忆网络 多分类问题
在线阅读 下载PDF
基于BiLSTM和注意力机制的结构振动响应重构
4
作者 王昊 胡志祥 张一赛 《振动与冲击》 北大核心 2025年第14期321-332,共12页
在结构健康监测系统中重构缺失响应数据对于准确评估结构工作状况至关重要。提出了一种基于双向长短期记忆网络和注意力机制的缺失振动响应重构网络——序列到序列-双向长短时记忆网络-注意力模型。该网络在序列到序列(sequence to sequ... 在结构健康监测系统中重构缺失响应数据对于准确评估结构工作状况至关重要。提出了一种基于双向长短期记忆网络和注意力机制的缺失振动响应重构网络——序列到序列-双向长短时记忆网络-注意力模型。该网络在序列到序列(sequence to sequence,Seq2Seq)架构的基础上,将响应重构问题建模为序列生成问题,利用数据间潜在的时空关系显著提高模型的重构性能。此外,提出了一种基于均值平滑的损失计算方法评估模型的整体性能。通过对八自由度振动系统数值算例以及道林厅人行桥实际监测数据的研究,验证了所提出模型的鲁棒性与准确性。试验结果表明,该模型在不同噪声环境下均能胜任响应重构任务,在低信噪比的情况下仍表现出优异的重构性能。 展开更多
关键词 结构健康监测 响应重构 深度学习 序列到序列 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于小波降噪与WOA⁃Bi⁃LSTM的短时交通流预测
5
作者 贾现广 苏治文 +1 位作者 冯超琴 吕英英 《现代电子技术》 北大核心 2025年第14期77-84,共8页
交通流数据中异常数据波动作为噪声,会对模型训练收敛以及预测精度产生不利影响。为解决该问题,引入两种不同阈值函数的小波阈值去噪方法对交通流数据进行降噪处理,将小波阈值去噪(WD)、鲸鱼优化算法(WOA)和双向长短期记忆网络(Bi-LSTM... 交通流数据中异常数据波动作为噪声,会对模型训练收敛以及预测精度产生不利影响。为解决该问题,引入两种不同阈值函数的小波阈值去噪方法对交通流数据进行降噪处理,将小波阈值去噪(WD)、鲸鱼优化算法(WOA)和双向长短期记忆网络(Bi-LSTM)相结合,提出一种WD-WOA-Bi-LSTM方法。首先,将两种方法降噪后的交通流数据进行对比,并将降噪效果更好的数据进行归一化处理、数据集划分以及数据维度转换;然后,通过WOA对Bi-LSTM部分超参数进行寻优,迭代至最优适应度的超参数组合,并用于构建Bi-LSTM;最后,应用英格兰公路交通流数据验证所提模型。结果表明:WDWOA-Bi-LSTM方法相较WOA-Bi-LSTM和WD-Bi-LSTM,RMSE降低12.5004%和3.9789%;MAE降低21.7350%和4.7225%;MAPE降低38.5647%和10.8652%。该模型相比其他模型评价指标均为最低,具有较高的预测精度,可以为高精度的短时交通流预测提供参考。 展开更多
关键词 智能交通 短时交通流预测 小波阈值去噪 鲸鱼优化算法 双向长短期记忆网络 深度学习 超参数寻优
在线阅读 下载PDF
谐波减速器失效预警方法研究
6
作者 李彬 陶建峰 +1 位作者 刘成良 贡亮 《机械设计与制造》 北大核心 2025年第3期281-287,292,共8页
谐波减速器是工业机器人的核心部件。在其运行过程中,功率信号是表征谐波减速器运行状态的关键参数,因此实时准确地预测谐波减速器功率,对于其失效预警具有指导性意义。提出了基于CNN和BiLSTM的混合深层神经网络(DCBNN),用于处理谐波减... 谐波减速器是工业机器人的核心部件。在其运行过程中,功率信号是表征谐波减速器运行状态的关键参数,因此实时准确地预测谐波减速器功率,对于其失效预警具有指导性意义。提出了基于CNN和BiLSTM的混合深层神经网络(DCBNN),用于处理谐波减速器状态监测数据从而准确地预测其功率信号。首先,对测得的运行参数进行数据预处理,并划分好数据集。然后,将分割好的数据集输入到DCBNN中,利用CNN和BiLSTM分支提取状态监测数据的空间特征和双向时序依赖。在此基础上,根据预测结果获得功率实际值和预测值残差的绝对值,利用概率论分布拟合方法拟合残差曲线,以获得谐波减速器失效预警的警报阈值。最后,使用谐波减速器实验数据构建的8个不同数据集来验证所提方法的有效性和优越性。在完整数据集上的试验结果表明,DCBNN模型可以有效的对谐波减速器进行失效预警。 展开更多
关键词 失效预警 谐波减速器 功率预测 卷积神经网络 双向长短期记忆神经网络 深度学习
在线阅读 下载PDF
基于CNN-BiLSTM-Attention模型的胡麻产量预测
7
作者 李星宇 李玥 高玉红 《江苏农业学报》 北大核心 2025年第7期1342-1349,共8页
本研究提出了一种用于胡麻产量预测的基于深度学习方法的卷积神经网络(CNN)-双向长短期记忆网络(BiLSTM)-注意力机制(Attention)模型,该模型整合了卷积神经网络的空间特征提取能力、双向长短期记忆网络的时序动态建模能力以及注意力机... 本研究提出了一种用于胡麻产量预测的基于深度学习方法的卷积神经网络(CNN)-双向长短期记忆网络(BiLSTM)-注意力机制(Attention)模型,该模型整合了卷积神经网络的空间特征提取能力、双向长短期记忆网络的时序动态建模能力以及注意力机制的特征自适应加权功能。基于气候数据、植被指数和2000-2020年产量对模型进行训练。试验结果表明,CNN-BiLSTM-Attention模型预测精度显著优于传统模型,其均方根误差(RMSE)达到316.98 kg/hm^(2),决定系数(R^(2))达到0.83。该模型在年际气候变化条件下保持了良好的稳定性和较高的精确度。本研究为胡麻产量预测提供了技术支持,其模块化设计框架还可推广应用于其他作物的生长监测与产量预估。 展开更多
关键词 胡麻 产量预测 深度学习 卷积神经网络 双向长短期记忆模型
在线阅读 下载PDF
基于分布式非线性映射和并行输入的BiLSTM软测量建模方法
8
作者 刘翌晗 王艳 +2 位作者 马浩 王团结 戴翠红 《化工学报》 北大核心 2025年第7期3373-3387,共15页
实际化工工业过程数据往往存在多重共线性、高度非线性等多重特性,这会严重影响传统软测量模型对关键质量变量的预测精度。针对这一局限性,提出了一种分布式非线性映射和并行输入的双向长短记忆(distributed nonlinear mapping and para... 实际化工工业过程数据往往存在多重共线性、高度非线性等多重特性,这会严重影响传统软测量模型对关键质量变量的预测精度。针对这一局限性,提出了一种分布式非线性映射和并行输入的双向长短记忆(distributed nonlinear mapping and parallel input bidirectional long short-term memory,DNMPI-BiLSTM)软测量模型。在所提策略中,首先为了阐述过程变量与质量变量之间的关联性,采用互信息以及最大相关最小冗余方法对输入数据集进行分类。随后,为了充分挖掘工业过程内部所包含的高度复杂的非线性关系,利用深度极限学习机的隐藏层对子过程变量空间进行非线性映射到高维空间。最后,将三类数据的非线性映射结果并行,建立了基于分布式非线性映射和并行输入的DNMPI-BiLSTM软测量模型,以提升模型对复杂工业过程质量变量的预测能力。通过三个工业案例验证所提方法的有效性,仿真结果表明,所提出的基于分布式非线性映射和并行输入的BiLSTM软测量建模方法的预测精度优于其他先进模型。 展开更多
关键词 双向长短期记忆 软测量 深度极限学习机 分布式输入 非线性映射
在线阅读 下载PDF
基于卷积复运算和神经网络的调制识别方法
9
作者 李丽文 鲁进 刘浩 《计算机工程与设计》 北大核心 2025年第8期2211-2218,共8页
针对现有的调制识别研究存在的低信噪比下识别率低、算法的特征单一、缺乏互补信息等问题,提出了基于卷积复运算网络的多融合调制识别方法。提取幅度/相位的复数特征,与同相/正交的互补特征进行融合,送入多层残差网络中对融合特征进行... 针对现有的调制识别研究存在的低信噪比下识别率低、算法的特征单一、缺乏互补信息等问题,提出了基于卷积复运算网络的多融合调制识别方法。提取幅度/相位的复数特征,与同相/正交的互补特征进行融合,送入多层残差网络中对融合特征进行充分挖掘,再由双向长短期记忆网络聚合上下文信息,并设计了通道和空间注意力网络来捕捉关键特征。在RML2018.01a上的实验结果表明,所提方法在信噪比为6 dB时的平均识别率为90.35%,优于其它深度学习方法,改善了高阶QAM调制的混淆情况。 展开更多
关键词 调制识别 深度学习 卷积复运算网络 多融合 残差网络 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
结合特征图矫正和改进Transformer的地物遥感图像描述生成
10
作者 赵洋 桑国明 张益嘉 《小型微型计算机系统》 北大核心 2025年第7期1666-1673,共8页
遥感图像(Remote Sensing Image, RSI)描述可自动生成说明地物RSI内容的句子.为解决地物遥感图像描述中非理想光和阴影干扰物体识别,以及地物RSI多尺度、多形态和多关系等因素导致描述不准确的问题,提出了基于特征图矫正的三阶段改进Tra... 遥感图像(Remote Sensing Image, RSI)描述可自动生成说明地物RSI内容的句子.为解决地物遥感图像描述中非理想光和阴影干扰物体识别,以及地物RSI多尺度、多形态和多关系等因素导致描述不准确的问题,提出了基于特征图矫正的三阶段改进Transformer方法(FMC-TSIT).卷积神经网络提取的图像特征中保留着非理想光信息,因此FMC-TSIT对中间聚合特征图进行矫正以重建非干扰特征图,修复特征图中的颜色退化,再将其送入三阶段改进Transformer,探寻图像全局空间表示以及对象之间局部邻域依赖关系,使其综合捕获地物RSI中各个对象的信息并理解目标对象间关联关系.在三阶段改进Transformer中,基于可学习记忆引导向量的类视觉转换器,在每次迭代训练中获取当前输入的视觉特征,更新和融合已有记忆,继而生成图像特征的全局空间关系表示;注意力双向长短时记忆网络(Attention-BiLSTM)抽取图像中对象特征之间的局部邻域依赖关系和上下文信息.实验结果显示,相比于(Convolutional Neural Network-Transformer, CNN-Transformer)方法,FMC-TSIT的综合语义评价指标值提升了3.41个百分点,其他语义指标值也有明显提升. 展开更多
关键词 遥感图像描述 特征矫正 TRANSFORMER 双向长短时记忆网络 深度学习
在线阅读 下载PDF
BiLSTM-Chan算法在超宽带室内定位中的应用
11
作者 赵辰瑞 连增增 +4 位作者 田亚林 贺刘辉 陈浩 王鹏辉 王孟奇 《测绘通报》 北大核心 2025年第5期100-105,共6页
针对UWB在室内定位中因人员走动引起的非视距误差(NLOS),以及常规神经网络训练后基站不能移动的问题,本文提出了一种基于融合双向长短期记忆神经网络的Chan算法(BiLSTM-Chan)。该算法首先通过双向长短期记忆神经网络处理UWB时序数据,给... 针对UWB在室内定位中因人员走动引起的非视距误差(NLOS),以及常规神经网络训练后基站不能移动的问题,本文提出了一种基于融合双向长短期记忆神经网络的Chan算法(BiLSTM-Chan)。该算法首先通过双向长短期记忆神经网络处理UWB时序数据,给出超宽带(UWB)时序数据的误差修正值,然后依靠Chan算法计算得到最终三维坐标。双向长短期记忆神经网络能够综合过去与未来的信息,更好地捕捉到时序数据中的特征信息。在网络中加入注意力机制能够帮助网络分析BiLSTM层提取的关键特征,让神经网络的预测更加准确。本文通过仿真试验和实测试验,对BiLSTM算法、Chan算法和最小二乘(LS)算法进行了对比。结果表明,相比于BiLSTM、Chan和LS算法,BiLSTM-Chan算法的精度分别提高了30.66%、61.78%和61.96%。 展开更多
关键词 室内定位 超宽带 双向长短期记忆神经网络 注意力机制 深度学习
在线阅读 下载PDF
针对非平稳信号和高频噪声的自适应噪声完整集成经验模态分解-双向长短期记忆风功率预测模型
12
作者 万思洋 杨苹 +3 位作者 崔嘉雁 李丰能 隗知初 陈文皓 《电网技术》 北大核心 2025年第3期1176-1184,I0085,共10页
提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高... 提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高风电功率预测的准确性和鲁棒性。当前风电功率预测面临非平稳信号和高频噪声的问题,影响了预测的准确性。针对这一问题,通过CEEMDAN分解,将复杂的非平稳信号分解为多个固有模态函数分量(intrinsic mode function,IMF),在此基础上创新性地通过平均波动幅度(average fluctuation range,AFR)计算IMF的平均波动幅度进行高低频划分,应用经验小波变换(empirical wavelet transform,EWT)对高频分量进行滤波,显著降低信号中的高频噪声,提高数据准确性。随后,分别对高频和低频分量建立Bi-LSTM模型,选取最优参数进行训练和预测,将各分量的预测结果叠加得到最终的风电功率预测值。模型经过不同季节和数据集的验证,展示了其在风电功率预测中的通用性和鲁棒性。研究证明,结合CEEMDAN分解、AFR划分和EWT滤波,通过有效的噪声抑制和数据分解,能够显著提升风电功率预测的准确性和稳定性,弥补了传统方法在处理非平稳信号和高频噪声方面的不足。 展开更多
关键词 风电功率预测 双向长短期记忆神经网络 完全集成经验模态分解 经验小波变换 深度学习
在线阅读 下载PDF
矿用电机车混合储能系统功率分配控制
13
作者 尹昊 祝龙记 《工矿自动化》 北大核心 2025年第5期114-119,154,共7页
单一蓄电池供电的矿用电机车存在续航里程不足、充电时间长、重载启动困难等问题,导致运行效率低,难以满足安全性与稳定性要求。提出在矿用电机车上采用铅酸蓄电池与超级电容的混合储能技术,设计了矿用电机车混合储能系统,以满足重载启... 单一蓄电池供电的矿用电机车存在续航里程不足、充电时间长、重载启动困难等问题,导致运行效率低,难以满足安全性与稳定性要求。提出在矿用电机车上采用铅酸蓄电池与超级电容的混合储能技术,设计了矿用电机车混合储能系统,以满足重载启动时高瞬时功率要求,增加续航时间。针对混合储能系统中储能元件的功率分配问题,通过仿真分析低通滤波与小波分解的优缺点,设计了低通滤波与小波分解相结合的功率分解方法,从矿用电机车总负载功率中分解出高低频分量;再根据储能元件的荷电状态(SOC),引入动态协调机制,对储能元件功率分配进行二次调控,得到蓄电池和超级电容的目标功率。仿真结果表明:应用组合分解方法得到的矿用电机车总负载功率的低频分量与原始功率的吻合度较高,瞬态响应性能优越;基于SOC的二次调控策略可动态调整混合储能系统的功率分配,减少了超级电容放电次数,增加了超级电容有效放电时间,使蓄电池稳定放电。 展开更多
关键词 矿用电机车 混合储能 功率分配 铅酸蓄电池 超级电容
在线阅读 下载PDF
基于Multi-Head Attention机制优化的Bi-LSTM模型河道汇流模拟
14
作者 程帅 张娟 +2 位作者 李晓琳 杨默远 沈建明 《水文》 北大核心 2025年第2期80-87,共8页
为有效提取河道径流时间序列信息特征,提高河道汇流过程模拟预测的非线性拟合能力,构建一种融合双向长短期记忆网络(Bi-LSTM)、多头注意力机制(Multi-Head Attention)、前馈神经网络(FFNN)的河道汇流预测模型(MABLFN)。为验证MABLFN模... 为有效提取河道径流时间序列信息特征,提高河道汇流过程模拟预测的非线性拟合能力,构建一种融合双向长短期记忆网络(Bi-LSTM)、多头注意力机制(Multi-Head Attention)、前馈神经网络(FFNN)的河道汇流预测模型(MABLFN)。为验证MABLFN模型有效性,以永定河山峡段典型站点实测数据开展实例验证,并将预测结果与单一的LSTM、Bi-LSTM模型和具有物理机制的MIKE11模型预测结果进行对比分析,评估模型不同预报时长径流过程预测性能。结果表明:MABLFN模型能够较好地预测河道径流,MABLFN模型相比于LSTM模型、Bi-LSTM模型和MIKE11模型的RMSE降低了1%~52%,NSE提高了8%~9%;在计算效率方面MABLFN模型相比于LSTM模型、Bi-LSTM模型计算耗时由0.26 s增加至1.2 s,相比于MIKE11模型(360 s)计算耗时明显降低。 展开更多
关键词 河道汇流演算 双向长短期记忆网络 多头注意力机制 深度学习
在线阅读 下载PDF
一种兼容海洋环境的改进Transformer声呐探测效能快速预报模型
15
作者 汪晶晗 陈欢 +1 位作者 金宇琦 兰朝凤 《声学技术》 北大核心 2025年第2期164-170,共7页
为提升高复杂海洋环境下声呐探测距离预测的准确性和效率,文章提出一种基于改进Transformer的传播损失与声呐探测距离建模方法,该方法能够兼容复杂海洋环境下不同点位、不同方向声信号传播损失差异,能够基于声呐方程及声呐主被动工作模... 为提升高复杂海洋环境下声呐探测距离预测的准确性和效率,文章提出一种基于改进Transformer的传播损失与声呐探测距离建模方法,该方法能够兼容复杂海洋环境下不同点位、不同方向声信号传播损失差异,能够基于声呐方程及声呐主被动工作模式,快速、有效地预测多点位多方向的声呐探测距离。以真实大区域海洋环境计算得到的传播损失数据为输入,通过将双向长短时记忆网络(bidirectional long short-term memory,Bi-LSTM)与Transformer架构中自注意力机制相结合,使得模型能够有效捕捉复杂环境变化的局部精确性和全局特征。实验结果表明,所提模型预测结果与声呐方程耦合积分方式得到的探测距离具有较好的一致性;同时计算效率提高了约1 000倍,提升了声呐性能的预报效率。 展开更多
关键词 声呐性能快速预测 深度学习 双向长短时记忆网络(Bi-LSTM) Transformer架构
在线阅读 下载PDF
基于EWBiLSTM-ATT的数据手套手语识别
16
作者 武东辉 王金凤 +1 位作者 仇森 刘国志 《计算机工程》 北大核心 2025年第8期107-119,共13页
手语识别近年来受到广泛关注,但现有手语识别模型存在训练时间长和计算成本高的问题。为此,基于穿戴式数据手套提出一种融合注意力机制的首层宽卷积核扩展深度卷积神经网络(EWDCNN)和双向长短期记忆网络(BiLSTM)的混合深度学习方法——E... 手语识别近年来受到广泛关注,但现有手语识别模型存在训练时间长和计算成本高的问题。为此,基于穿戴式数据手套提出一种融合注意力机制的首层宽卷积核扩展深度卷积神经网络(EWDCNN)和双向长短期记忆网络(BiLSTM)的混合深度学习方法——EWBiLSTM-ATT模型。首先通过加宽首层卷积层来减少模型参数量,提升计算速度,通过扩展WDCNN卷积层深度来提高模型自动提取手语特征的能力;其次引入BiLSTM作为时间建模器捕捉手语序列数据的时间动态信息,有效处理传感器数据中的时序关系;最后利用注意力机制通过映射加权和学习参数矩阵赋予BiLSTM隐含状态不同权重,通过计算每个时间段的注意力权重,模型自动选择与手势动作相关的关键时间段。以STM32F103为主控模块,以MPU6050与Flex Sensor 4.5传感器为核心搭建数据手套手语采集平台。选取16种动态手语动作用于构建GR-Dataset数据训练模型。同一实验条件下,EWBiLSTM-ATT准确率为99.40%,相对于CLT-net、CNN-GRU、CLA-net、CNN-GRU-ATT模型分别提升10.36、8.41、3.87、3.05百分点,训练总时间分别缩减至这4种对比模型的57%、61%、55%、56%。 展开更多
关键词 扩展深度卷积神经网络 双向长短期记忆网络 注意力模块 手语识别 数据手套 深度学习
在线阅读 下载PDF
基于特征增强时间序列和Transformer-BiLSTM的低速重载轴承故障诊断
17
作者 许一凡 雪增红 +3 位作者 郭军 程峰 王启峥 王道帅 《机电工程》 北大核心 2025年第9期1659-1668,共10页
针对低速重载设备滚动轴承故障诊断需要较高的识别准确度和时间效率,且存在故障信息特征提取不充分的问题,提出了一种基于特征增强时间序列(FRTS)和Transformer-BiLSTM的滚动轴承故障诊断方法。首先,对原始数据频域信号进行了低通滤波处... 针对低速重载设备滚动轴承故障诊断需要较高的识别准确度和时间效率,且存在故障信息特征提取不充分的问题,提出了一种基于特征增强时间序列(FRTS)和Transformer-BiLSTM的滚动轴承故障诊断方法。首先,对原始数据频域信号进行了低通滤波处理,对滤波后的信号进行了频域上采样,重构了幅值和相位,增强了故障信息;然后,采用逆傅里叶变换将信号转换为故障特征增强的时域信号,将数据输入Transformer编码器层提取特征,同时引入双向长短时记忆网络(BiLSTM),使网络能够提取信号双向时间序列上的依赖关系;最后,将信号特征池化并传输至全连接层进行了故障分类,使用低速重载轴承实例数据集验证了基于FRTS和Transformer-BiLSTM方法的有效性和可行性,并采用西储大学数据集验证了其泛化能力和鲁棒性。研究结果表明:基于FRTS和Transformer-BiLSTM的轴承故障诊断方法在低速重载轴承实例数据集上的准确率为85.0%,相比于其他传统深度学习模型,其故障识别率更高;在西储大学数据集中,采用该方法时获得诊断准确率达到99.6%。该诊断方法可满足轴承故障诊断的要求,为轴承故障诊断提供了一种新方法。 展开更多
关键词 轴承故障分类识别 深度学习 特征增强时间序列 多头注意力机制 双向长短时记忆网络 信号重构
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
18
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
基于多模态深度学习的充电硐室锂电池健康状态预测
19
作者 赵应华 陈安碧 +2 位作者 张增誉 李文中 韩宇 《工矿自动化》 北大核心 2025年第5期120-128,共9页
在井下多尘、潮湿且易爆的环境中,锂电池的退化过程往往呈现非线性、多阶段的特点,传统的单一模型难以全面捕捉其动态变化。针对该问题,提出一种基于多模态深度学习的充电硐室锂电池健康状态预测方法。构建了多模态深度学习网络模型TCN−... 在井下多尘、潮湿且易爆的环境中,锂电池的退化过程往往呈现非线性、多阶段的特点,传统的单一模型难以全面捕捉其动态变化。针对该问题,提出一种基于多模态深度学习的充电硐室锂电池健康状态预测方法。构建了多模态深度学习网络模型TCN−BiLSTM−Transformer。该模型通过多层级特征提取机制实现时序信号的高效处理:时间卷积网络(TCN)采用具有指数扩展率的空洞卷积核,在保持时序完整性的同时捕获多尺度局部特征;双向长短期记忆网络(BiLSTM)通过双向门控循环单元(GRU)建立时序双向依赖关系,有效识别电池退化过程中的正反向退化特征;Transformer层则通过多头自注意力机制动态分配特征权重,实现全局退化模式的关键特征聚焦。通过锂电池工作过程中的多源传感数据(电压、电流和温度等)作为健康状态表征指标,通过Pearson相关性分析评估健康指标与电池容量的关联性,确定5个间接健康因子并作为预测模型的输入。实验结果表明,该方法的相关度均在98%以上,且均方误差、均方根误差、平均绝对误差、平均绝对百分比误差均较小。在煤矿防爆锂电池模拟工况应用验证中,该方法的相关度达99.47%,与传统方法的预测结果相比,波动幅度更小,精度更高。 展开更多
关键词 防爆锂电池 健康状态预测 多模态深度学习 时间卷积网络 双向长短期记忆网络 TCN−BiLSTM−Transformer
在线阅读 下载PDF
Intelligent modeling method for OV models in DoDAF2.0 based on knowledge graph
20
作者 ZHANG Yue JIANG Jiang +3 位作者 YANG Kewei WANG Xingliang XU Chi LI Minghao 《Journal of Systems Engineering and Electronics》 2025年第1期139-154,共16页
Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a vi... Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method. 展开更多
关键词 system of systems(SoS)architecture operational viewpoint(OV)model meta model bidirectional long short-term memory and conditional random field(BiLSTM-CRF) model generation systems modeling language
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部