在结构健康监测系统中重构缺失响应数据对于准确评估结构工作状况至关重要。提出了一种基于双向长短期记忆网络和注意力机制的缺失振动响应重构网络——序列到序列-双向长短时记忆网络-注意力模型。该网络在序列到序列(sequence to sequ...在结构健康监测系统中重构缺失响应数据对于准确评估结构工作状况至关重要。提出了一种基于双向长短期记忆网络和注意力机制的缺失振动响应重构网络——序列到序列-双向长短时记忆网络-注意力模型。该网络在序列到序列(sequence to sequence,Seq2Seq)架构的基础上,将响应重构问题建模为序列生成问题,利用数据间潜在的时空关系显著提高模型的重构性能。此外,提出了一种基于均值平滑的损失计算方法评估模型的整体性能。通过对八自由度振动系统数值算例以及道林厅人行桥实际监测数据的研究,验证了所提出模型的鲁棒性与准确性。试验结果表明,该模型在不同噪声环境下均能胜任响应重构任务,在低信噪比的情况下仍表现出优异的重构性能。展开更多
实际化工工业过程数据往往存在多重共线性、高度非线性等多重特性,这会严重影响传统软测量模型对关键质量变量的预测精度。针对这一局限性,提出了一种分布式非线性映射和并行输入的双向长短记忆(distributed nonlinear mapping and para...实际化工工业过程数据往往存在多重共线性、高度非线性等多重特性,这会严重影响传统软测量模型对关键质量变量的预测精度。针对这一局限性,提出了一种分布式非线性映射和并行输入的双向长短记忆(distributed nonlinear mapping and parallel input bidirectional long short-term memory,DNMPI-BiLSTM)软测量模型。在所提策略中,首先为了阐述过程变量与质量变量之间的关联性,采用互信息以及最大相关最小冗余方法对输入数据集进行分类。随后,为了充分挖掘工业过程内部所包含的高度复杂的非线性关系,利用深度极限学习机的隐藏层对子过程变量空间进行非线性映射到高维空间。最后,将三类数据的非线性映射结果并行,建立了基于分布式非线性映射和并行输入的DNMPI-BiLSTM软测量模型,以提升模型对复杂工业过程质量变量的预测能力。通过三个工业案例验证所提方法的有效性,仿真结果表明,所提出的基于分布式非线性映射和并行输入的BiLSTM软测量建模方法的预测精度优于其他先进模型。展开更多
为提升高复杂海洋环境下声呐探测距离预测的准确性和效率,文章提出一种基于改进Transformer的传播损失与声呐探测距离建模方法,该方法能够兼容复杂海洋环境下不同点位、不同方向声信号传播损失差异,能够基于声呐方程及声呐主被动工作模...为提升高复杂海洋环境下声呐探测距离预测的准确性和效率,文章提出一种基于改进Transformer的传播损失与声呐探测距离建模方法,该方法能够兼容复杂海洋环境下不同点位、不同方向声信号传播损失差异,能够基于声呐方程及声呐主被动工作模式,快速、有效地预测多点位多方向的声呐探测距离。以真实大区域海洋环境计算得到的传播损失数据为输入,通过将双向长短时记忆网络(bidirectional long short-term memory,Bi-LSTM)与Transformer架构中自注意力机制相结合,使得模型能够有效捕捉复杂环境变化的局部精确性和全局特征。实验结果表明,所提模型预测结果与声呐方程耦合积分方式得到的探测距离具有较好的一致性;同时计算效率提高了约1 000倍,提升了声呐性能的预报效率。展开更多
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base...[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.展开更多
Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a vi...Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.展开更多
文摘在结构健康监测系统中重构缺失响应数据对于准确评估结构工作状况至关重要。提出了一种基于双向长短期记忆网络和注意力机制的缺失振动响应重构网络——序列到序列-双向长短时记忆网络-注意力模型。该网络在序列到序列(sequence to sequence,Seq2Seq)架构的基础上,将响应重构问题建模为序列生成问题,利用数据间潜在的时空关系显著提高模型的重构性能。此外,提出了一种基于均值平滑的损失计算方法评估模型的整体性能。通过对八自由度振动系统数值算例以及道林厅人行桥实际监测数据的研究,验证了所提出模型的鲁棒性与准确性。试验结果表明,该模型在不同噪声环境下均能胜任响应重构任务,在低信噪比的情况下仍表现出优异的重构性能。
文摘实际化工工业过程数据往往存在多重共线性、高度非线性等多重特性,这会严重影响传统软测量模型对关键质量变量的预测精度。针对这一局限性,提出了一种分布式非线性映射和并行输入的双向长短记忆(distributed nonlinear mapping and parallel input bidirectional long short-term memory,DNMPI-BiLSTM)软测量模型。在所提策略中,首先为了阐述过程变量与质量变量之间的关联性,采用互信息以及最大相关最小冗余方法对输入数据集进行分类。随后,为了充分挖掘工业过程内部所包含的高度复杂的非线性关系,利用深度极限学习机的隐藏层对子过程变量空间进行非线性映射到高维空间。最后,将三类数据的非线性映射结果并行,建立了基于分布式非线性映射和并行输入的DNMPI-BiLSTM软测量模型,以提升模型对复杂工业过程质量变量的预测能力。通过三个工业案例验证所提方法的有效性,仿真结果表明,所提出的基于分布式非线性映射和并行输入的BiLSTM软测量建模方法的预测精度优于其他先进模型。
文摘为提升高复杂海洋环境下声呐探测距离预测的准确性和效率,文章提出一种基于改进Transformer的传播损失与声呐探测距离建模方法,该方法能够兼容复杂海洋环境下不同点位、不同方向声信号传播损失差异,能够基于声呐方程及声呐主被动工作模式,快速、有效地预测多点位多方向的声呐探测距离。以真实大区域海洋环境计算得到的传播损失数据为输入,通过将双向长短时记忆网络(bidirectional long short-term memory,Bi-LSTM)与Transformer架构中自注意力机制相结合,使得模型能够有效捕捉复杂环境变化的局部精确性和全局特征。实验结果表明,所提模型预测结果与声呐方程耦合积分方式得到的探测距离具有较好的一致性;同时计算效率提高了约1 000倍,提升了声呐性能的预报效率。
文摘[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.
基金National Natural Science Foundation of China(71690233,71971213,71901214)。
文摘Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.